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Introduction to Biostatistics:
Part 1, Basic Concepts

Statistical methods commonly used to analyze data presented in journal
articles should be understood by both medical scientists and practicing
clinicians . Inappropriate data analysis methods have been reported in
42% to 78% of original publications in critical reviews of selected medi-
cal journals . The only way to halt researchers' misuse of statistics and
improve the clinician's knowledge of statistics is through education . This
is the first of a six-part series of articles intended to provide the reader
with a basic, yet fundamental knowledge of common biomedical statisti-
cal methods . The series will cover basic concepts of statistical analysis,
descriptive statistics, statistical inference theory, comparison of means,
X2, and correlational and regression techniques. A conceptual explanation
will accompany discussion of the appropriate use of these techniques.
JGaddis ML, Gaddis GM: Introduction to biostatistics : Part 1, basic con-
cepts. Ann Emerg Med January 1990;19:86-89 .1

INTRODUCTION
The practicing physician must remain abreast of new information and

techniques and meet standards for continuing medical education . A major
source of new information is the medical journal . Given the competition
involved in achieving publication of research, as well as the review and
editing process, the reader might justifiably assume that published studies
are correct in their methodology, regardless of the conclusions made. Al-
though this assumption seems reasonable, it is not correct. Between 1979
and 1984, 42% to 78% of original publications from selected medical jour-
nals used inappropriate statistical analysis methods.t-5

Statistical analysis involves organization and mathematical manipula-
tion of data . This process can describe characteristics studied and help to
infer conclusions from the data, thus guiding the acceptance or rejection of
a given treatment or theory. Incorrect data analysis is a grave error in the
research process, often leading to inappropriate conclusions, continued
study of erroneous hypotheses, and curtailed study of viable therapies and
therapeutic adjuncts . Additional dangers ensue when a physician uses non-
efficacious treatment on a patient. From this, it becomes apparent that a
basic knowledge of statistics can be an important tool for any clinician,
whether in performing research or simply reading about it .
However, statistical analysis of data is a task commonly delegated to

statistical consultants . This is often justified by citing that there are those
more qualified to perform this function than the principal investigator of a
study. Though this seems logical, the principal investigator remains the
individual ultimately responsible for the content and conclusions of a re-
search project . The principal investigator cannot effectively meet this
obligation fully if he does not have an adequate working knowledge of
biomedical statistics . The investigator cannot plead innocence through ig-
norance when serious errors are made .
Thus, there is an obvious need for statistical education among clinicians,

not only to provide for a better understanding when reading the biomedical
literature but also to aid medical researchers in communication with con-
sulting statisticians and for selection of appropriate data analysis tech-
niques .
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FIGURE 1 . A bell-shaped or normal
distribution curve .

FIGURE 2. Frequency distributions :
A, bimodal, B, rectangular, C, posi-
tively skewed : D, negatively skewed.
(Hopkins KD, Glass GV: Basic Statis-
tics for the Behavioral Sciences . En-
glewood Cliffs, New Jersey, Prentice-
Hall Inc, 1978, p 36.)

STATEMENT OF PURPOSE
It is our purpose to present a six-

part series discussing the basics of
biomedical statistics, with the intent
to familiarize the reader with the ter-
minology and appropriate use of data
analysis techniques commonly used
in original papers published in An-
nals of Emergency Medicine and
other clinical medical journals .
Learning will be directed toward a
conceptual understanding of statisti-
cal analysis methods rather than
computational exercises .

Part 1, in this issue of Annals, pre-
sents some basic concepts of statisti-
cal analysis . Knowledge of these
building blocks is necessary for a
complete understanding of biomedi-
cal statistics and the topics of future
articles in this series .

Part 2 will address descriptive sta-
tistics . These include measures of
central tendency (mean, median, and
mode), measures of variability (stan-
dard deviation and standard error of
the mean), and confidence intervals .
Appropriate uses of these will be dis-
cussed .

Part 3 will introduce statistical in-
ference theory . An explanation of the
concept of hypothesis testing, defini-
tion of the probability value P, a dis-
cussion of the terms alpha, beta, and
power, and a discussion of clinical
versus statistical significance will be
included . Sensitivity, specificity, and
predictive value will also be ad-
dressed .

Part 4 will present parametric and
nonparametric methods used for the
comparison of means. Included will
be analysis of variance (ANOVA/, the
Student's t test, the Mann-Whitney
U test, and methods of multiple
comparisons.

Part 5 will present a discussion of
Xz and Fisher's exact tests. Both sta-
tistical methods should be under-
stood by readers of biomedical re-
search involving a study of the effi-
cacy of experimental medical
treatments .
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Part 6 will give a basic discussion
of correlation and regression, along
with the series' concluding remarks .

SAMPLE VERSUS
POPULATION

It is clearly impossible for most
scientific studies to survey all indi-
viduals of a group about which con-
clusions are to be drawn . Cost and
time considerations force the re-
searcher to settle for studying a sub-
set of a group in order to form con-
clusions about the entire group. For
example, if one wished to know the
systolic, diastolic, and mean blood
pressures of the entire population of
the United States, this testing could
be done as part of the next census, in
which all members of the population
would be surveyed. However, the
cost of training census takers for this
time-consuming task and the need to
hire additional census takers because
of the increased time required to
check each individual would make
sampling the entire population an
impractical task . Similarly, in bio-
medical research, time and financial
costs preclude study of every mem-
ber of the population .
However, if a representative sam-

ple of an appropriate population can
be obtained and studied, conclusions
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about the sample can be properly ex-
trapolated to the defined population.
The key to obtaining a representative
sample of that population lies in ran-
dom selection of a study sample from
the applicable population . Random-
ization can be accomplished by sam-
ple subject selection using a random
number table, drawing numbers or
names out of a hat, or the like . Ran-
dom sampling implies that all indi-
viduals in a population have an equal
chance to be included in the sample .

It is when random allocation of
study subjects to treatment groups is
violated that bias is introduced . Bias
can easily lead to erroneous conclu-
sions because control and treatment
groups may inherently differ in rele-
vant characteristics before the study
is initiated . Therefore, post-treat-
ment differences between groups can
erroneously be ascribed to an effect
of the experimental treatment! Im-
proper allocation of subjects to con-
trol and treatment groups remains a
significant problem confounding cur-
rent biomedical research.

DATA SCALES
Before an analysis method can be

selected, the type of data that will be
generated by the research process
must be defined . Dat, ; »ill fit a nom-
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Statistical
analysis

Population

Sample

Random sample

Nominal scale

Ordinal scale

Interval scale

Ratio scale

Distribution
Normal

distribution

Parametric
methods

Nonparametric
methods

The organization and mathematical manipulation of
data, used to describe characteristics studied and/or
to help infer conclusions from the data
A large group possessing a given characteristic or set
of characteristics . A population may be finite (the
states of the United States) or infinite (blood pressure
measurements of all infants born in New York)6
The studied subset of members of a defined
population6
The process of selection of a sarriple from a
population whereby each member of the population
has an equal and independent chance of being
chosen6
Numbers are arbitrarily assigned to characteristics for
data classification
Numbers are used to denote rank-order, without
defining a magnitude of difference between numbers
Numbers denote units of equal magnitude as well as
rank order on a scale without an absolute zero
Numbers denote units of equal magnitude as well as
rank order on a scale with an absolute zero
The systematic organization of a collection of data
A grouping of data that is graphically symmetrical and
bell shaped . Many human anatomic and physiologic
characteristics are normally distributed
Used when the data studied are from a sample or
population that is normally distributed . Data must be
of an interval or ratio scale
Used when the data studied are from a sample or
population that deviates from a normal distribution .
Ordinal data are analyzed using nonparametric
methods of analysis 3

inal, ordinal, interval, or ratio scale.

Nominal Scale
Nominal is the most primitive of

the data scales. Information classified
by an assigned number or code to
make the data numeric fits a nomi-
nal scale. For instance, gender may
be defined as 1 for "female" and 2 for
"male." Clinical diagnoses may also
be assigned representative numbers,
such as 1 for "renal failure," 2 for
"congestive heart failure," 3 for "dia-
betes," and so forth. It must be em-
phasized that the numbers selected
are purely arbitrary and are chosen at
the discretion of the researcher with-
out regard to any order of ranking of
severity. 6,7

Ordinal Scale
Ordinal scale data can be ranked in

a specific order, be it low to high or
high to low. An example would be
data from a questionnaire in which a

191 January 1990

response of "strongly agree" is scored
as 5, "agree" is scored 4, "no opin-
ion" is scored 3, "disagree" is scored
2, and "strongly disagree" is scored 1.
In this example, the responses are
scored on a continuum, without a
consistent level of magnitude of dif-
ferences between ranks. However,
unlike the nominal scale, numbers of
an ordinal scale are not arbitrary be-
cause the order of numbers is mean-
ingful6 For instance, in the above ex-
ample, progressively larger numbers
indicate progressively greater agree-
ment with the question presented.
The Glasgow Coma Scores allots a
progressively decreased classification
number that implies progressively
worsened obtundation. Other exam-
ples of ordinal scales familiar to
many emergency physicians would
include the Trauma Score9 and the
Injury Severity Score.r0
Average values of ordinal scale

data are often calculated but are usu.
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FIGURE 3. Summary of biostatisti-
eal terms.

ally misleading because of the lack of
any consistent magnitude of differ-
ence between units of the scale."
Also, it is not uncommon in trauma
outcome studies to see such data re-
ported with standard deviation
values . Calculation of such statistics
from nonparametric, and thus non-
normally distributed data, is highly
questionable because use of the stan-
dard deviation assumes that the data
are normally distributed.

Interval Scale
interval scale data are a step more

sophisticated than ordinal scale data .
Not only is there a predetermined or-
der to the numbering of the scale, but
also there is a consistent level of
magnitude of difference described be-
tween the observed data units.6 Inter-
val data also have a clearly defined
unit of measure. However, "the zero
point on the scale is arbitrary, and
does not correspond to a total ab-
sence of the characteristic measured
. . . ."6 The Farenheit scale for tem-
perature is interval in nature, as the
numbering of the scale is consistent,
yet the zero value is arbitrary. Be-
cause of the consistent numbering of
the scale and equal magnitude be-
tween measurement units, average
values and measures of variability of
interval scale data are meaningful.
An interval scale can be converted to
an ordinal scale to show ranking, but
an ordinal scale ordinarily cannot be
converted to an interval scale.6

Ratio Scale
The ratio scale is simply an inter-

val scale with an absolute zero .6 A
predetermined order to the number-
ing of the scale is present, as is a con-
sistent level of magnitude between
each unit of measure. Ratio data can
be converted to ordinal data . Heart
rate, blood pressure, distance, time,
and degrees Kelvin represent exam-
ples of ratio scale data .

DISTRIBUTIONS
Once data are collected, they can

be organized into a distribution, or
graph of frequency of occurrence.
This is a visually descriptive tool
that allows the researcher to begin to
define and analyze data.

Figure 1 is a theoretical frequency
distribution of resting hears rite of
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emergency physicians . Its shape is
symmetrical and bell-shaped, and is
defined as the "normal distribution ."
Many human anatomic and physi-
ologic characteristics approach the
normal distribution-6 Other termi-
nology used synonymously with
"normal distribution" includes
Gaussian curve, curve of error, and
normal probability curve . An under-
standing of the characteristics of the
normal distribution is fundamental
in the development of even a basic
knowledge of biostatistics . This topic
will be discussed in greater detail in
Part 2 of this series .
Other distributions are depicted in

Figure 2.6 Bimodal distributions have
two peaks of cluster, or areas with a
high frequency level . For example, if
the weights of American adults were
plotted, there would be two defini-
tive points of cluster, one for female
weight and one for male weight.
Data that are rectangularly distrib-

uted show equal frequency of occur-
rence for all levels of a characteristic .
The date of birth (month and day( of
a sample of all patients seen in an
emergency department approaches
this distribution pattern .
Skewed data are those that tail off

to either the high or low end of mea-
surement units. The annual income
of patients seen in the ED of an in-
ner-city community hospital will be
defined by a distribution that is pos-
itively skewed, showing a high fre-
quency of lower annual incomes . A
negatively skewed distribution has a
cluster of data on the high end of the
unit scale and tails off toward the
low end . 6
Given the nature of data collected

in medical science research, the nor-
mal distribution is the one with
which the clinician will be most fa-
miliar. Most statistical methods ap-

., 89

plied to interval or ratio data assume
that the data are normally distrib-
uted . It is when this assumption is
violated that significant controversy
exists in the statistical community
regarding the proper application of
statistical tests .

PARAMETRIC VERSUS
NONPARAMETRIC METHODS

Statistical methods are defined as
being parametric or nonparametric .
The type of analysis method that
should be selected is dependent on
the nature of the data to be analyzed.
Parametric methods use data extrap-
olated from a sample of the popula-
tion studied to numerically describe
some characteristic of a population .
Parametric methods are valid only
when that characteristic follows or
nearly follows the normal distribu-
tion in the population studied .12
Thus, parametric methods can be ap-
plied properly to most interval and
ratio scale data when those data
come from a sample of a normally
distributed population . Parametric
methods can be used to derive mea-
sures of central tendency and vari-
ability, which will be discussed in
Part 2 of the series.
Nonparametric methods are ap-

plied to non-normally distributed
data and/or data that do not meet the
criteria for the use of parametric
methods . Data that fit the ordinal
scale definition should be analyzed
by nonparametric methods . Exam-
ples include Glasgow Coma Scales
Trauma Score,9 the Injury Severity
Score,1o and other similar ordinal
scales data.

SUMMARY
This has been the introductory in-

stallment of a series of articles out-
lining the proper use of biostatistics.
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We have introduced some basic con-
cepts regarding data and its classi-
fication, which will be needed for un-
derstanding of topics to be presented
subsequently (Figure 3). Measures of
central tendency, measures of vari-
ability, confidence intervals, and the
appropriate use of these statistical
concepts will be discussed in part 2
of this series .
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introduction to Biostatistics: Part 2,
Descriptive Statistics

Descriptive statistics include measures of central tendency and vari .
ability. Measures of central tendency include mean, median, and mode.
The mean is the arithmetic average of data from interval or ratio scales.
The median reflects the 50th percentile score . The mode is the most fre-
quently occurring value of a data distribution . Measures of variability in-
clude range, interquartile range, standard deviation, and standard error of
the mean . The range describes the spread between the extreme values of
data. Interquartile range is data included between the 25th and 75th per.
centile of a distribution . Standard deviation describes variability of data
about the sample mean, while standard error of the mean helps describe
the distribution of several sample means about a true population mean .
Finally, confidence intervals, which are derived from the standard error of
the mean, define an interval likely to include a true population value,
based on sample statistical values and probability characteristics of data
distributions. /caddis GM, caddis ML: Introduction to biostatistics: Part
2, descriptive statistics. Ann Emerg Med March 1990,19:309-315.1

INTRODUCTION
Statistical analysis is the process by which numerical data obtained by

scientific inquiry are transformed into a useable form for scientific inter .
pretation. This involves manipulation of data for describing characteristics
studied ddescriptive statisticsf and transformation of the data to help infer
conclusions from the data (inferential statisticsf.

This second of a six-part series on biostatistics focuses on descriptive
statistics. A thorough understanding of this topic is needed before advanc-
ing to discussions about inferential statistics . Familiarity with the con-
cepts regarding types of data and data distributions, as presented in part 1,1
is required for understanding the concepts presented herein . Numerical ex-
amples are provided to facilitate understanding. Finally, there exist many
common, yet inappropriate uses of statistics, which will be discussed in
this article.

MEASURES OF CENTRAL TENDENCY
Mean

. The mean is the arithmetic average of data and is expressed by the
equation :

where X equals the mean, X{ equals each individual data point, and n is the
number of data points in the sample . The mean can be calculated for inter-
val and ratio scale data. However, mean values for ordinal scale data are
generally misleading or invalid due to the lack of a consistent level of
magnitude between numeric units of the scale.' Therefore, the mean Is
useful for data such as heart rate and blood pressure, but is misleading for
arbitrarily constructed data scales such as the Apgar Scale, Glasgow Coma
Score, and Trauma Score.2"s
The mean is affected by outliers which are extreme values of a data

distribution .2 This is not true of otter measures of central tendency.

X = E Xt/n
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FIGURE 1 . Systolic blood pressure of
30 men aged 31 to 40 years . The
mean, median, and mode all equal
120.

FIGURE 2. Systolic blood pressure in
persons with renovascular hyperten-
sion . Mean, 228.7 ; median, 230 ;
mode, 240.

FIGURE 3. Systolic blood pressure in
young men and pregnant women. M
denotes male subjects, F denotes fe-
male subjects . Mean, 106.1 ; median,
105 ; mode, 95,120.

Median
The median is the "mid-most"

value of a data distribution. It is the
value above which or below which
half of the data points lie . 2,4,s Alter- .
natively, the median is the 50th per-
centile value of a distribution .
The median is unaffected by out-

liers and may be more useful than
the mean to describe data when out-
liers exist2 or when continuous data
are not normally distributed . 4 The
median is useful for describing ordi-
nal data4 because the magnitude of
difference between points of a data
scale need not be consistent to deter-
mine the 50th percentile value . 2 The
median is not useful to describe
nominal data 2 because of the arbi-
trary selection of numbers used to
generate this scale .

Mode
The mode is the most commonly

obtained value or values on a data
scale, or the highest point of a peak
on a frequency distribution .2 The
mode is most useful when two clus-
ters of data exist (bimodal distribu-
tion), such that a group mean is mis-
leading or meaningless .2 The mode is
useful to describe nominal data, de-
fining the most prevalent characteris-
tic of a sample .

Numerical Examples
Three different distributions of

data will be examined to determine
how the type of data distribution ob-
tained affects the previously defined
measures of central tendency.

Figure 1 represents normally dis-
tributed data for systolic blood pres-
sure of 30 men aged 31 to 40 years .
For normally distributed data, the
values of the mean, median, and
mode are identical .

1,1 2 1 3`10

Mean . 120
Median . 120
Mode - 120

Figure 2 presents theoretical sys-
tolic blood pressure data of patients
with untreated renovascular hyper-
tension . The distribution is nega-
tively skewed . In the absence of nor-
mality, the mean, median, and mode
are not equal . Also, an outlier, such
as a systolic blood ptessure value of
150 mm Hg imtcad ef 180 mm Hg,
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will alter the value of the mean, but
not the median or mode.
Figure 3 presents systolic blood

pressure for a sample that includes
two groups, pregnant women in their
second trimester and men. Again, the
mean and median are unequal in this
non-normally distributed data . Al«o
there exist two peaks of data chtctcr
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two modes . To ignore the bimodal as-
pect of this distribution would be to
overlook its unique feature. Also, the
presence of an outlier would alter the
mean, but not the median or modes.
In Figures 2 and 3 the mean, me-

dian, and mode(s) are unequal be-
cause data are not normally distrib-
uted.5 Thus, the measure of central
tendency most useful to data analy-
sis depends on the type of data, and
what aspect of the data is to be con-
veyed . Fortunately, most physiologt'c
data are normally or near normally
distributed so that mean, median,
and mode are equal . However, ordi-
nal scale data have no consistent
magnitude of difference between
units of the data scale, and most or-
dinal data are not normally distrib-
uted.; Therefore, the mean is mis-
leading as a measure of central ten-
dency for ordinal scale data . 2. 3
No single measure of central ten-
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13.59%

50'" percentile
I

34.13%

99.98%

34.13%

TABLE I. Applicability of measures of central tendency

I 68.26% 1
95.44%
99.72%

dency is best for all situations. 5 The
applicability of measures of central
tendency is summarized (Table 1).

MEASURES OF VARIABILITY
Measures of central tendency do

not describe the variability, or
spread, of data . Standardized esti-
mates defining data variability are
needed to help infer whether two
groups studied differ significantly . In
other words, measures of variability
are used to help infer whether two or
more groups studied are drawn from
different populations . Several esti-
mates of variability exist .

Range
The range is the interval between

the lowest and highest values within
a data group . 2 It is the simplest mea-
sure of variability to understand and
identify . While simple, the range
only considers the extreme values of
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13.59%

97.7'" percentile
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FIGURE 4. SD and thenormal distri-
bution : 68.26% of all scores fall
within ± 1 SD from the mean;
95.44% of all scores fall within ± 2
SD from the mean; 99.72% of all
scores fall within ± 3 SD from the
mean ; 99.98% of all scores fall
within ± 4 SD from the mean. 5.6

a series of measures, and thus the
presence of one outlier can markedly
influence the range . The range is
purely a descriptive tool and should
not be used to infer whether groups
differ statistically.

Interquartile Range
The interquartile range is a mea-

sure of variability directly related to
the median. Recall that the median, a
measure of central tendency applica-
ble to ordinal and non-normally dis-
tributed data, is the middlemost
value of a set of data . The median
represents the 50th percentile . The
interquartile range is that range de-
scribed by the interval between the
25th and 75th percentile values .6

It has been suggested that the in-
terquartile range be used for describ-
ing the variability of data that do not
meet parametric analysis standards,
such as ordinal scale data . 6 The inter-
quartile range clearly defines where
the middle 50% of measures occurs
and indicates the spread of the data

311+143

Characteristic Mean ' Median Mode
Useful with interval, ratio data Yes Yes Yes
Useful with ordinal data No Yes Yes
Useful with nominal data No No Yes
Affected by outliers Yes No No
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TABLE 2. Estimates of variability of si-stolic blood pressure data of men aged 31 to 40 years

SD -

	

7.9 1 - 9.377
SEM = 9.337 - 1.712

without using statistical techniques
improperly.

Standard Deviation
The standard deviation (SD( is one

of the moat commonly encountered
estimates of data variability and is
integral to performance of inferential
statistical techniques . 2 It provides an
estimate of the degree of scatter of

1441312

individual sample data points about
the sample mean.
The usefulness of the SD lies in its

properties as related to the Gaussian,
or normal, distribution . The SD itself
can be used to define an extreme
score, such as the value that is ex-
ceeded by 5% or 95% of all scores
from a sample of a population . 2 Fig-
ure 4 shows that 6 .26°,b of data
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points of a normally distributed pop-
ulation fall within plus or minus one
SD of the mean, and 95 .44% of
points fall within plus or minus two
SD of the mean.5
The SD is calculated as the square

root of another term called the vari-
ance . Because individual data points
will fall both above and below the
mean, the effect of direction of diHcr-

Systolic
Subject Blood Pressure (X - X,) (X - X I)2
1 135 15 225
2 115 5 25
3 110 10 100
4 130 10 i00
5 125 5 25
6 125 5 25
7 105 15 225
8 120 0 0
9 120 0 0
10 120 0 0
11 125 5 25
12 110 10 100
13 115 5 25
14 115 5 25
15 135 15 225
16 100 20 400
17 120 0 0
18 125 5 25
19 120 0 0
20 130 10 100
21 140 20 400
22 120 0 0
23 115 5 25
24 110 10 100
25 130 10 100
26 105 15 225
27 120 0 0
28 115 5 . 25
29 125 5 25
30 120 0 0
Mean - I X/n - 3,600/30 = 120
Median - 120
Mode = 120
Variance : I (X - X,)2/(n-1) = 2,550/29 87.931



120

SD = 9.37

	

SD = 9.37

SEM = 1 .71 SEM - 1.71

95% CI

MEAN

TABLE 3. Applicability of measures of variability

"SEM = SD/,,/n7thus SD is involved indirectly in calculating a confidence interval .

ence will cause some deviations from
the mean to be positive and some to
be negative . To overcome this effect,
deviations are squared to obtain a
positive number . Individual squared
deviations from the mean are then
averaged to calculate the estimate of
variability known as the variance .
Numerically

Variance = E (X - Xi)2/(n-1(
where X equals the mean, Xi equals
each individual data point, and n
equals the total number of data
points .s -7 The variance represents the
deviation from the mean, expressed
as the square of the units used . For
19 :3 March 1990

instance, in Figure 1, the variance of
systolic blood pressure is expressed
as mm Hg2 . However, these squared
units are not meaningful. Therefore,
the square root of the variance is
then calculated, to bring the vari-
ability estimate back to the correct
scale . This is the value known as the
SD :

SD =

	

variance
The SD is meaningful only when ap-
plied to data that are normally or
nearly normally distributed.2,8.4 It is
applicable to interval or ratio scale
data . 2
The SD is useful in application to

Annals of Emergency Medicine

130

1

140

5

FIGURE S. Systolic blood pressure of
men aged 31 to 40 years. SD, SE, and
95% CI are noted .

statistical inference techniques. The
calculation of SD from the normally
distributed systolic blood pressure
data of Figure 1 is shown (Table 2).

Standard Error of the Mean
The standard error of the mean

(SEMI is a statistic derived from the
SD, and is simply calculated as

SEM = SD/Vn-
It is obvious from the calculation
that the SEM is always smaller than
the SD and the greater the n, the
smaller the SEM will be .
The SEM is an abstract concept .

Imagine repeating an experiment nu-
merous times . With each experi-
ment, a different sample group would
be drawn from the study population .
Because each repetition of the experi-
ment contains unique sample mem-
bers, different mean values will be
generated with each study. The col-
lection of these mean values, as gen-
erated from repetitive sampling and
experimentation, will reflect "scat-
ter" about the true but unknown
population mean . The SEM is simply
a quantification of the variability of
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Interquartile
Characteristic Range Range SD SEM

Useful to describe interval or Yes Yes Yes Yes
ratio data

Used to describe ordinal data Yes Yes No No
Descriptive of sample variability Yes Yes Yes No
Assists in statistical inference No No Yes Yes
Used to calculate confidence No No No" Yes

intervals
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these sample mean . alues . The SEM
is properly used to estimate the pre-
cision or reliability of a sample, as it
relates to the population from which
the sample was dratisn 1 o- 1 1 The SEM
does not provide an estimate of the
scatter of sample data about the sam-
ple mean 12 and should not be used as
such .
The SEM is useful because it is

used in the calculation of "confi-
dence intervals," which contain an .
estimate of the true mean for an en-
tire population from which the sam-
ple was drawn . Confidence intervals
can be used for descriptive or inferen-
tial purposes .
A calculation of SEM for the nor-

mally distributed data presented in
Figure 1 is shown /Table 2).

Standard Deviation Versus
Standard Error of the Mean
Both SD and SEM are measures of

variability. However, the two statis-
tics are different and are frequently
confused or misused.t2 The SD de-
fines variability of sample 'data
points about a sample mean . The SD
is always greater than the SEM. The
SEM is most commonly calculated to
help derive confidence intervals.

Various authors have commented
about the intellectual sleight of hand
of incorrectly using SEM when only
SD is appropriate to describe sample
data variability.6-t2, 13 Bunce et alt 3
reviewed 608 articles in six journals
in which mean t SD or SEM were
reported . In 50%, SEM values were
reported when only the SD would
have been appropriate . The authors
concluded that "many workers may
choose to report the SEM because it
is simply smaller than the SD." 13
The inappropriate use of SEM to de-
scribe sample data variability may be
presented by authors in an attempt
to imply that a significant difference
exists between groups, when in fact
no difference exists . Elenbaas et al.t 2
were more blunt, concluding that au-
thors who present data as mean t

SEM instead of mean ± SD may be
trying to actively impair the reader's
ability to accurately identify the vari-
ability in the study data .
Whether by error or by design, it is

incorrect to underrepresent the vari-
ability of sample data as mean ±
SEM. We suggest that readers multi-
ply the SEM by Vnto obtain the SD
when SEM is erroneously used to ex-
press sample variability . It is not an
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TABLE 4. Effect of confidence level and sample size on confidence
interval width

Calculation of Cls for Data Presented In Table 2

Effect of Sample Size on CI for Data With A Mean of 120 and a SD of 9.377

error to use SEM in speculating a
range, or confidence interval, within
which a true population mean is
likely to fall . The SD and SEM of the
data shown in Figure 1 are given (Fig-
uie 5) . Table 3 summarizes the,
proper use of estimates of variability.

Confidence Intervals
When statistics derived from the

sampling of a population are studied
to infer values for population param-
eters, it would be useful to have con-
fidence that the sample statistical
value, such as a mean or SD, would
be representative of the true popula-
tion parameter . One cannot be cer-
tain that a sample statistical value is
representative of the true population
parameter, but one can calculate a
range of values likely to be represen-
tative of the population parame-
ter. 4 - 14 That range of values is called
a confidence interval (CI). Calcula-
tion of a C1 is a method of estimating
the range of values likely to include
the true value of a population param-
eter . Since one cannot study all
members of a population, a represen-
tative sample of the population is
studied, and from this one uses the
mean and SEM to work backward to
estimate a CI .
The width of the CI depends on

the SEM and the degree of confidence
we arbitrarily choose . For instance, a
95% CI, which is the degree of confi-
dence most commonly expressed, 14

is a range of values broad enough
that, if the entire population could be
studied, 95% of the time the popula-
tion mean would fall with the CI es .
timated from the sample of the popu-
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lation . 1 s Also' the closer a point lies
to the middle of the Cl, the more
likely it is representative of the pop-
ulation . 16
Though by convention the 95% Cl

is most commonly reported, the 95%
level is not rigidly required . Wider
CIs, such as a 99% or 99.9% CI, are
even more likely to include the true
population parameter value and are
commonly used for critical appraisal
of data . They are also advocated for
examinations of data during ongoing
accumulation of subjects in a clinical
trial.'s Narrower Cls, such as the
90% CI, can be used when study au-
thors find it acceptable that ten
times out of 100, the true population
parameter may not lie within the CI .
However, the width of a CI depends
not only on the variability of the data
and the level of confidence selected,
but also the sample size .
When one broadens a CI by mov-

ing a 95% to a 99°lo CI, accuracy is
increased because the calculated CI
becomes more likely to include a
true population parameter. However,
when the level of CI is held constant
and sample size is increased, SEM is
decreased and thus the CI is nar-
rowed . This narrowing of the CI in-
creases the precision of the Cl . The
effect of level of confidence selected
and sample size on the width of a CI
is shown (Table 4).

Calculation of the CI for estima-
tion of true population mean values
applies to continuous data from nor-
mal or near-normal distributions . 4
Also, a CI can be estimated for such
other statistics as medians, regres-
sion slopes, relative ri ;l: data, re-

' .'arch 1990

CI(%) SD n SEM CI
90 9.377 30 1 .712 120 ± 2.82
95 9.377 30 1 .712 120 ± 3.36
99 9.377 30 1 .712 120 t 3 .83

CI(%) SD n SEM CI
95 9.377 30 1 .712 120 t 3.36
95 9.377 100. 0.938 120 t 1 .84
95 9.377 .000 0.297 120 t 0.582



sponse rates, intergroup differences
of response rates, X year survival
rates, median survival duration, and
hazard ratios . 14, 16 In addition, CI
may be used to visually compare data
when two or more sample groups are
studied but their members were not
randomly selected or assigned be-
tween the groups.l s

Pitfalls in the use of the CI exist .
Confidence intervals convey the ef-
fects of sampling variation but do not
control for such nonsampling errors
in study design or execution as im-
proper selection of subjects, poor ex-
perimental design, and the like .°

SUMMARY
This article has highlighted com-

mon proper and improper use of mea-
sures of central tendency and mea-
sures of variability. The relationship
between the type of data scale and
the correct use of mean, median, and
mode have been presented . The vari-
ability estimates of range, interquar-
tile range, SD, and SEM have been in-
troduced, and their proper and im-
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proper use has been discussed .
Finally, the concept and proper use of
Cis have been outlined .
The next installment of this series,

in the May issue, will cover hypoth-
esis testing. Included will be types of
experimental error, the terms alpha
(al and beta (A/, statistical power, and
sensitivity, specificity, and predictive
value .
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Biostatistics

Introduction to Biostatistics: Part 3,
Sensitivity, Specificity, Predictive Value,
and Hypothesis Testing

Diagnostic tests guide physicians in assessment of clinical disease states,
just as statistical tests guide scientists in the testing of scientific hypoth-
eses . Sensitivity and specificity are properties of diagnostic tests and are
not predictive of disease in individual patients . Positive and negative pre-
dictive values are predictive of disease in patients and are dependent on
both the diagnostic test used and the prevalence of disease in the popula-
tion studied. These concepts are best illustrated by study of a two by two
table of possible outcomes of testing, which shows that diagnostic tests
may lead to correct or erroneous clinical conclusions. In a similar manner,
hypothesis testing may or may not yield correct conclusions. A two by two
table of possible outcomes shows that two types of errors in hypothesis
testing are possible . One can falsely conclude that a significant difference
exists between groups (type I error). The probability of a type I error is a .
One can falsely conclude that no difference exists between groups (type 11
error). The probability of a type II error is R . The consequence and proba-
bility of these errors depend on the nature of the research study. Statistical
power indicates the ability of a research study to detect a significant dif-
ference between populations, when a significant difference truly exists.
Power equals 1-0. Because hypothesis testing yields "yes" or "no" an-
swers, confidence intervals can be calculated to complement the results of
hypothesis testing. Finally, just as some abnormal laboratory values can
be ignored clinically, some statistical differences may not be relevant clin-
ically. (Gaddis GM, Gaddis ML: Introduction to Biostatistics : Part 3, sen-
sitivity, specificity, predictive value, and hypothesis testing. Ann Emerg
Med May 1990;19:591-597.1

INTRODUCTION
Diagnostic tests guide the physician in assessment of clinical disease

entities. In a similar manner, statistical inference theory guides the scien-
tist in the testing of scientific hypotheses . Before discussing inferential
techniques (parts 4 and 5 of this series/, it is necessary to understand the
basis of hypothesis testing, to gain an appreciation of the type of questions
inferential statistics help answer . Clinical diagnostic testing and hypoth-
esis testing have many parallels, but most clinicians are more familiar
with diagnostic than hypothesis testing. Therefore, this article will focus
on the components of diagnostic testing theory, including sensitivity, spec-
ificity, and predictive value . This will be followed by analogies to facilitate
understanding of hypothesis testing .

EVALUATION OF DIAGNOSTIC TESTS
Sensitivity and Specificity
Physicians make medical diagnoses with the aid of the patient history,

physical examination, and diagnostic testing. Numerous new diagnostic
tests are presented each year . in the medical literature, and each must be
evaluated before it is introduced into the clinical setting . Most new diag-
nostic tests are evaluated in relation to another older, previously accepted,
often more invasive, and historically reliable test (the "gold standard"
test/ . Common examples of gold standards include the use of ECG changes
plus cardiac enzyme levels to diagnose acute myocardial infarction, or pul-
monary angiography to diagnose pulmonary embolism. For the purposes of
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our discussion, it will be assumed
that results obtained by the gold
standard test are always correct .

Hypothetically, imagine that a new
magnetic resonance imaging (MRI)
venogram has been proposed as a
noninvasive means of evaluating pa-
tients suspected by clinical criteria of
having a deep venous thrombosis .
The MRI venogram, the proposed .
new diagnostic test, will be evalu-
ated against the traditional and
widely used gold standard, the intra-
venous contrast venogram . Table I
shows that there are four possible
outcomes of diagnostic testing . Pa-
tients can be diagnosed as having
deep venous thrombosis or not hav-
ing deep venous thrombosis by both
the gold standard test and by the new
Mill diagnostic test, if patients un-
dergo both tests .

In Table 1, 250 patients clinically
suspected of having deep venous
thrombosis undergo both tests. Of
the 250 patients clinically suspected
to have deep venous thrombosis, 150
actually do have deep venous throm-
bosis, with 130 shown to have deep
venous thrombosis by both the gold
standard test and by the new Mill
test . This group of 130 is termed the
true positive (TP) group by the new
diagnostic test because they are
shown to have disease by the new
test and are also proven to have dis-
ease by the gold standard test . How-
ever, 20 of the 150 patients who are
proven by the gold standard test to
have deep venous thrombosis had a
negative MRI diagnostic test . These
20 are termed the false negative (FN)
group because they were classified
incorrectly as disease free by the new
MRI test .

Similarly, 100 of the patients were
judged disease free by the contrast
venogram, but of these, only 87 had a
negative MRI test . This group of 87
constitutes the true negative (TN)
group . The remaining 13 were incor-
rectly classified by the new MRI test
as having a deep venous thrombosis,
when in fact they did not have the
disease . This constitutes the false
positive (FP) group .
The two by two outcome table in

Table I can now be used to help us
evaluate how well the new MRI test
does in detecting deep venous throm-
bosis . We want to know the answers
to two questions : Is the test sensitive
enough to detect the presence of a
deep venous thrombosis in a diseased
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TABLE 1 . Gold standard versus diagnostic test

patient? Is the test specific enough to
indicate the absence of deep venous
thrombosis disease only in patients
who in fact are not afflicted by it?

Sensitivity, which can be thought
of as "positivity (of the test) in dis-
ease," is derived by working down
the first column of Table 1 :

Sensitivity (%)
100 x TP/(TP + FN)

In this example, sensitivity equals
100 x 130/(130 + 20), or 86.7% .

Annals of Emergency Medicine

Gold Standard Test
(Contrast Venogram)

TABLE 3. Possible outcomes of hypothesis testing

Specificity, which can be thought
of as "negativity (of the test) in
health," is also derived by working
vertically, in the second column of
Table 1 :

Specificity (% ) =
100 x TN/(TN + FP)

Here, specificity equals 100 x 87/(87
+ 13), or 87.0% .
The ideal diagnostic test would be

100% sensitive and 100% specific,
and thus would have no FP or FN
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Disease No Disease
Evident Evident Total

Diagnostic Disease TP (130) FP (13) 143
Test Evident
(MRI . No Disease FN (20) TN (87) 107

Venogram) Evident
150 100 250

TABLE 2. Gold standard versus diagnostic test

Gold Standard Test
(Contrast Venogram)

Disease No Disease
Evident Evident Total

Diagnostic Disease TP (35) FP (21) 56
Test Evident
(MR1 No Disease FN (5) TN (139) 144

Venogram) Evident
40 160 200

Reality
Ho False, Ho True,
H, True H, False

Decision From
Statistical Test
Reject Ho, Correct, Incorrect,
Accept H, No Error Type I Error

(A) (B)
Accept Ho, Incorrect, Correct,
Reject H, Type II Error No Error

(C) (D)



TABLE 4 . Prior probability and chance of error

outcomes. Because virtually all diag-
nostic tests have some FP and FN
outcomes, they do not have 1009'0
sensitivity and specificity .
Unfortunately, many clinicians be-

lieve that sensitivity and specificity
can be used to predict whether an in-
dividual patient is diseased or disease
free . This is an error. Sensitivity and
specificity are merely properties of a
test . Sensitivity and specificity
should not be used to make predic-
tive statements about an Individual
patient.

Predictive Value
Predictive values can be used to

help predict the likelihood of disease
in an individual . A positive predic-
tive value (PPV) is useful to indicate
the proportion of Individuals who ac-
tually have the disease when the di .
agnostic test indicates the presence
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of that disease . A negative predictive
value (NPV) is useful to determine
the proportion of individuals who are
truly free of the disease tested for
when the diagnostic test indicates
the absence of that disease .

Predictive values are derived by
working horizontally on the two by
two outcome table in Table I-
PPV (%) = 100 x TP/(TP + FP)
NPV (°!o) = 100 x TN/(TN + FN)
From the example in Table 1, PPV

= 100 x 130/1130 + 131, of 90.99'0,
and NPV - 100 x 87/(87 + 20), or
81.39'0 .
PPV and NPV are affected by the

prevalence of disease in the popula-
tion . Prevalence is defined as the pro-
portion of the population afflicted by
the disease in question . In the exam-
ple In Table 1, the prevalence of deep
venous thrombosis when it was clin-
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FIGURE 1 . Operating characteristic
curve . p is dependent on a, n, and A .
In this example, a is fixed at .05. All
else held constant, increasing & or
increasing n decreases P.

ically suspected was 60% because
the total number of patients studied
was 250, and the number of patients
who actually had a contrast veno-
gram (the gold standard test) indica-
tive of deep venous thrombosis was
150.

Next, the effects of decreased prev-
alence of deep venous thrombosis on
the predictive value of the MRl veno-
gram test will be examined . Imagine
a sample of 200 patients, only 20% of
whom have a deep venous throm-
bosis (prevalence, 20°x). This group is
depicted (Table 2) . Because 20% of
the patients have a deep venous
thrombosis, the sum of TP + FN in
column I must be 0.2 x 200, or 40 . Of
these, about 35 will constitute the
TP group because the sensitivity of
the test has already been shown to be
86.7% (0.867 x 40 = 34.7/. The re-
maining five can be expected to be in
the FN group because sensitivity is a
property of the test independent of
disease prevalence . Because the prev-
alence of deep venous thrombosis is
only 20%, the remaining 0.8 x 200,
or 160, will not have a deep venous
thrombosis, so the sum of TN + FP
results In column 2 will be 160. Of
this set of 160, 879'0, or about 139,
will be in the TN group, and the re-
maining 21 will be in the FP group
because specificity is also a property
of the test, independent of disease
prevalence .
The change of prevalence mark-

edly influences the PPV and NPV
values obtained (Table 21 . With a
20% prevalence, the PPV falls to 100
x 35/(35 + 21), or 62.59'0, while the
NPV increases to 100 x 139/(139 + 5),
or 96.5%. Note that as disease preva-
lence falls, the PPV of any test will
fall and the NPV of any test will in-
crease .
From this, it is easy to see why

many new diagnostic tests that seem
from initial reports to be useful may
not represent a diagnostic improve-
ment when in common use . Many
diagnostic tests are validated in set-
tings on populations with a high
prevalence of the disease for which
testing is done. H6wever, when the
new test is used in different clinical
settings with a lower prevalence of
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Prior Probability
Low High

Chance of Error
Type I High Low
Type 11 Low High
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FIGURE 2 . Clinical testing.

that disease, the test does not per-
form up to reported expectations . A
clinical example of the interrelation-
ship between prevalence of disease
and predictive value is the use of am-
ylase levels to screen for pancreatitis .
An elevated amylase level is more
likely indicative of pancreatitis in
persons previously afflicted with
pancreatitis than it is predictive of
pancreatitis among all patients with
abdominal pain or other possible
causes of an elevated serum amylase
level .

In summary, sensitivity and speci-
ficity are properties that indicatt the
degree of reliability of a diagnostic
test . Sensitivity and specificity do
not indicate predictive value . Predic-
tive values can be applied to an indi-
vidual patients test result and are af-
fected by the prevalence of the dis-
ease in the population to which the
test is applied . The PPV will fall and
the NPV will rise as the prevalence
of disease decreases .

HYPOTHESIS TESTING
Formulation of the Hypothesis

Statistical Inference involves the
testing of hypotheses . A hypothesis
is a numerical statement about an
unknown parameter .' just as a two
by two table can be constructed for
the four possible outcomes of a clini-
cal diagnostic test, a two by two ta-
ble can be constructed for the four
possible outcomes of hypothesis test-
ing.

Before constructing this table, it is
necessary to understand what a hy-
pothesis states . The first step in hy-
pothesis testing is a statement of a
hypothesis in positive terms . This
defines the "research" or "alterna-
tive" hypothesis, H,.2 For example,
one could hypothesize that experi-
enced trntrgency physicians (those
with more than five years of full-
time postgraduate emergency depart-
ment experience) can examine, diag-
nose, and treat more patients per
hour than inexperienced emergency
physicians (less than five years of
full-time ED experience).
The next step is to state the "null"

or "statistical" hypothesis, Ho,
which follows logically from H,.' .2
The hypothesis tested statistically is
H~ . In this example, 1"lo would state
"Experienced emergency physicians
and inexperienced emergency physi-
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Sensitivity

Specificity

Prevalence

Positive
Predictive
Value
Negative
Predictive
Value

The ability of a test to reliably detect the presence of disease
(positivity in disease).
Sensitivity (%) _ 100 x TP/(TP + FN)
The ability of a test to reliably detect the absence of disease
(negativity in health).
Specificity (%) = 100 x TN/(TN + FP)
The proportion of the population with disease .
Prevalence (%) = 100 x (TP + FN)I(n)
The proportion of individuals with disease when the presence
of disease is Indicated by the diagnostic test .
PPV = 100 x TP/(TP + FP)
The proportion of individuals free of disease when the ab-
sence of disease is indicated by the diagnostic test .
NPV = 100 x TNI(TN + FN)

TN, true negative ; rN, false negative ; TP, true positive; FP, false positive .

clans do not differ significantly in
the number of patients they can ex-
amine, diagnose, and treat per hour."
We "reject" or "fail to reject" J"ac-

cept") Ho based on our inferential
statistical testing.t -3 Ho hypothesizes
a difference of zero between popula-
tion samples tested, while H, hy-
pothesizes a nonzero difference be-
tween population samples tested .
There exist an infinite number of
possible nonzero differences between
populations. Therefore, the reason
that Ho rather than H, is tested is
that mathematically, Ho theorizes a
single magnitude of difference be-
tween populations studied, and it is
possible to statistically assess this
single hypothesis . In contrast, H is
actually an infinite number of Ly-
potheses because there exist an ini -
nite number of possible magnitudes
of difference between populations.4 It
would be impossible to calculate the
required statistics for each of the in-
finite number of possible magnitudes
of difference between population
samples Ht hypothesizes .

If Ho is "accepted" as tenable, then
H, must be "rejected," and vice
versa, because the two hypotheses
are mutually exclusive. When Ho is
tested, the probability that numerical
differences between population sam-
ples are not due strictly to chance is
assessed .2 Ho does recognize that
nonzero differences between groups
are possible, even if two samples of
the same population are tested, sim-
ply due to random scatter of the
data .2 If f ;o is "accepted" as tenable,
this signifies the likelihood that no
significant difference exists between
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the populations studied and that any
numerical differences between
groups are due to chance alone . If It,,
is rejected, this signifies that a signif-
icant difference does exist between
the populations studied and that the
numerical differences between the
groups are not due to chance alone .

Errors in Hypothesis Testing
Hypothesis testing may lead to er-

roneous inferential statistical conclu-
sions, just as diagnostic testing may
lead to erroneous diagnostic conclu-
sions . just as a two by two table of
possible outcomes of diagnostic tests
can be constructed, so can a two by
two table of possible outcomes of in-
ferential statistical tests be con-
structed (Table 31. Two types of in-
correct conclusions are possible . Box
B of Table 3 indicates cases in which
the statistical test falsely indicates
that a significant difference exists be-
tween groups, when in fact no true
difference exists . It is analogous to a
false-positive diagnostic test result .
In other words, box B shows cases
where 140 is rejected, when it is in
fact true . This rejection of Ho when
Ho is true is arbitrarily called a type I
error . t -3
Box C of Table 3 indicates cases in

which the statistical test falsely indi-
cates the lack of a significant differ-
ence between groups, when in fact a
true difference exists (H, is truel .
This is analogous to a false-negative
diagnostic test result . In other words,
box C shows cases in which Ho is ac-
cepted when it is in fact false . The
acceptance of Ho when Ho is false is
are itrarily called a type Ii errot . 1

14'i t.tC;, IN0



Research
(Alternative)
Hypothesis
(H,)
Null
(Statistical)
Hypothesis
(Ho) .
Type I
Error

Type II
Error

Alpha (a)
P< .05

Beta (0)
Power

Delta (A)
Operating
Characteristic
Curve
Prior
Probability

An hypothesis that states a difference exists between two
(or more) populations studied. H, is a positive statement
that a difference exists between groups .

An hypothesis of no difference between two or more pop-
ulations studied. Ho is a negative statement, that no differ-
ence exists between groups . .

To reject the null hypothesis (Ho), when in fact Ho is true .
To falsely conclude that a significant difference exists be-
tween populations .
To accept the null hypothesis (Ho), when in fact Ho is false .
To falsely conclude that no significant difference exists
between populations .
The probability of making a type I error.
Statistical calculations from the experimental data indicate
that the probability of making a type I error is less than
5%.
The probability of making a type II error.
The ability of an experiment to find a significant difference
exists between populations, when in fact a significant dif-
ference truly exists . Power = 1 - p
The degree of difference between populations tested .
A function that relates the dependent variable p that re-
sults from Independent values of a, A, and n.

The likelihood that an hypothesized difference between
populations is in fact correct. 3

Box A and box D of Table 3 denote
correct conclusions, analogous to
true-positive and true-negative diag-
nostic test results . Thus, Table 3
shows that there exist two correct
and two incorrect conclusions possi-
ble whenever Ho is tested .
Next, the probability of making in-

correct conclusions must be as-
sessed. The probability of making a
type I error is defined as alpha (aj.t .2,4
a is derived from the raw data, statis-
tical calculations, and statistical ta-
bles appropriate for the inferential
statistical test used. By convention,
statistical significance is generally
accepted if the probability a of mak-
ing a type I error is less than 0.05,
which is commonly denoted on fig-
ures and tables as P < .05 .3" 4
Though conventional, selection of

an alpha level of .05 as the crucial
level of significance is arbitrary . Ac-
cepting significance at a = .05
means that it is recognized that one
time out of 20, a type I error will be
committed, a consequence that the
investigator is willing to accept . If
the consequences of making a type 1
error are judged to be sufficiently se-
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vere, it may be appropriate to select
more stringent levels of a, such as
.01, as the cutoff for statistical signif-
icance . When a caption or text indi-
cates that for some statistical .com-
parison, P - XY, the probability of a
type I error, based on the calculations
performed for that inferential statis-
tical test, is O.XY, and the reader is
left to judge whether this level of a is
indicative of a true difference be-
tween populations tested. Another
advantage of the reporting of P values
is that the arbitrary designation of
significance at .05, and the improper
and arbitrary designation of a trend if
.10 > P > .05, can be avoided.
The probability of making a type H

error is defined as beta lp) . 1 .2,4 P is
more difficult to derive than a, and
unlike a, actually is not one single
probability value . p is often ignored
by researchers .s However, it is im-
portant . If some treatment yields a
10% increase in survival or a 10% de-
crease in some complication, it
would likely be readily incorporated
into medical practice . Unfortunately,
numerous clinical trials have suf-
fered from errors of experimental de-
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FIGURE 3. Hypothesis testing .

sign that cause p to be unacceptably
high, such that type 11 errors are eas-
ily made, and treatments that are sig-
nificantly better than older methods
are rejected because of statistical arti-
fact resulting from poor experimental
designs By convention, p should be
less than .20, and ideally less than
.10, to minimize the chance of mak-
ing a type 11 error. 6
a and p are interrelated. All else

held constant (such as the popula-
tions studied, the number of subjects,
and the method of testing), as a is ar-
bitrarily decreased, p is increased . As
a is increased, 0 is decreased . 1,2

Statistical power is defined as
(1-0),1,2,4 Because p indicates the
probability of making a type II error,
power indicates mathematically the
probability of not making a type H er-
ror . Power is analogous to sensitivity
in hypothesis testing . Sensitivity in-
dicates the probability that the diag-
nostic test can detect disease when it
is present. Power indicates the proba-
bility that the statistical test can de-
tect significant differences between
populations, when in fact such differ-
ences truly exist .
Power depends on several vari-

ables : 1 .2,4,7
a : As a increases, 0 decreases, and

power increases.
n (sample sizel : As n increases,

power increases .
The magnitude of the difference

actually present between the popula-
tions tested, delta (A) : just as it is
easier to find a pitchfork than a nee-
dle in a haystack, so it is easier to
find a large difference than it is to
find a small difference between popu-
lations tested .

One-tailed versus two-tailed tests :
One-tailed tests are more powerful
than two-tailed tests, because a sta-
tistical test result must not vary as
much from the mean to achieve sig-
nificance at any level of a chosen. (If
ot is .05, for a two-tailed test, a result
must fall in either the top or bottom
2'/2% of results to achieve signifi-
cance, but for a one-tailed test, the
result must merely fall in either the
top or bottom 5% of a distribution .)
In the original hypothesis example
about how quickly emergency physi-
cians can treat patienis, the appropri-
ate test would be one-tailed, because
H, specifies the direction of the dif-
ference between groups hypothe-

595/119



BIOSTATISTICS
Gaddis g Gaddis

sized .
Parametric versus nonparametric

statistical testing : Parametric tests
are generally more powerful . (This
will be further discussed in Part 4 of
this series .)
Use of proper experimental design

and statistics : Errors in these areas
decrease power .

Because so many variables can af-
fect p, ¢ is not one single value . This
follows from the fact that a is the
probability of erroneously concluding
that Ho is false, and H specifies a
single magnitude of diofference be-
tween popuiations . However, as has
been explained, p is the probability
of erroneously concluding that H r is
false, and H t hypothesizes an infinite
number of possible magnitudes of
difference between populations
tested . p is expressed as a unction of
L1, n, and a by a function called the
operating characteristic curve of the
tests (Figure 1) .
The most common use of p is in

the calculation of the approximate
number of subjects that must be
studied to keep a and p acceptably
small. This calculation uses esti-
mates of population standard devia-
tions and estimates of !,, acceptable
values of a and p, and numbers from
statistical tables, to derive a value of
n of sufficient size . The determina-
tion of adequate sample size for an
experiment is readily referenced.R- 10

P 'Values Versus Confidence
Intervals

Hypothesis testing yields yes or no
answers about statistical signifi-
cance, answers that can be fraught
with errors, and answers that may
rtpresent over,implifications . P
values imply little about the magni-
tude of difference present between
populations . Therefore, some feel
that the use of confidence intervals
(CIS) is complementary or even pref-
erable to the use of P values in
reporting clinical data . I I (Confidence
intervals were discussed in part 2 of
this series.12) It is correct to report
both Cl and P values for scientific
data, and the two are often comple-
mentary) ,11

Clinical Versus Statistical
Significiiice

Statisilcally significant numerical
differences between study groups
may not be clinically significant or
relevant . Air analogy to clinical test-
150.'596

ing is again useful . It is common ex-
perience to ignore or place little em-
phasis on a sinpl diagnostic test re-
sult that lies outside the expected
range for that test when large num-
bers of tests are done . An example is
the interpretation of an isolated ele-
vated amylase level in a patient hav-
ing otherwise normal routine labora-
tory data after a normal screening
physical examination at his .family
physician's office . Many experienced
clinicians can intuitively sense when
to place little emphasis on isolated
laboratory test results outside the
normal range when an abnormal re-
sult is not expected . Alternatively
stated, when there is very little prior
probability of disease, an isolated ab-
normal laboratory value is generally
not cause for great concern, and the
clinician avoids a clinical error anal-
o*ous to a type I error by avoiding
concluding that disease is present in
a disease-free patient .
Similarly, if enough statistical

comparisons are made, eventually
type I and type 11 statistical errors are
inevitable . The problem comes in
discerning which statistically signifi-
cant differences are meaningful and
which are meaningless . just as preva-
lence affects the predictive value of a
positive diagnostic test, so the prior
probability of a difference affects the
predictive value of a statistical test .
Prior probability is an expression of
how likely in hypothesis will be true
when assessed before doing statisti-
cal calculations . Prior probability is
derived from previously available
knowledge that led to the formula-
tion of the hypothesis being tested .
When a hypothesis has a low prior

probability of being true, yet
achieves statistical significance, such
as a link between coffee consump .
tion and pancreatic cancet,13 a signif-
icant result must be interpreted cau-
tiously . Furthermore, if a type 1 error
is being made, repetitive study will
probably not replicate A significant
difference, as subsequently occurred
in the case of the alleged link be-
tween coffee consumption and pan-
creatic cancer.14 However, in cases of
high prior probability, a significant
statistical difference is usually cor-
rect, just as in cases of high disease
prevalence, a positive clinical test re-
sult is more likely to be correct .

Table 4 summarizes the interrela .
tionship between prior probability
and the chance of making a type I or
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type 11 error . This relationship is fur-
ther explained by Bayes theorem,
which the reader is invited to ex-
plore .

SUMMARY
An understanding of the inter-

pretation of diagnostic tests facili-
tates an understanding of hypothesis
testing . A diagnostic test result may
be a true-positive, true-negative,
false-positive, or false-negative re-
sult . For diagnostic tests, sensitivity
and specificity are properties of the
diagnostic test and do not indicate
predictive value . Prevalence of dis-
ease is a determinant of the predic-
tive value of both positive and nega-
tive test results .

Similarly, hypothesis testing can
yield erroneous results . A false-posi-
tive result, which accepts the pres-
ence of a significant difference be-
tween populations when in fact no
significant difference exists /type 1 er-
ror), occurs with a probability of a. A
false-negative result, rejecting the
presence of a significant difference
between populations, when in fact
they actually do differ (type 11 error),
occurs with a probability of p .
Power is 1-p, and is analogous to

the sensitivity of a diagnostic test in
that both sensitivity and power ad-
dress whether a test can detect what
it is designed to detect . As sensitivity
and specificity are not predictive, so
also power is not predictive . As prev-
alence of disease affects the predic-
tive value of a positive test result, so
the prior probability of a difference
being present affects the predictive
value of a significant statistical test
result . Figures 2 and 3 summarize
these points .
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SPECIAL CONTRIBUTION
biostatistics

introduction to Biostatistics: Part 4,
statistical Inference Techniques in
Hypothesis Testing

statistical methods used to test the null hypothesis are termed tests of
significance . Selection of an appropriate test of significance is dependent
on the type of data to be analyzed and the number of groups to be com-
pared. Parametric tests of significance are based on the parameters, mean,
standard deviation, and variance, and thus are used appropriately when
interval or ratio data are analyzed. The t-test and analysis of variance
(ANOVA) are examples of parametric tests of significance . Assumptions
regarding the data to be analyzed when using the t-test or ANOVA include
normality of the populations from which the sample data are drawn, ho-
mogeneity of the variances of the populations from which the sample data
are drawn, and independence of the data points within a sample group.
The t-test is the appropriate test of significance to use if there are only two
groups to compare. If there are three or more groups to compare, ANOVA is
the appropriate test . ANOVA holds the preset a level constant . While
ANOVA will imply a significant difference between the groups compared,
a multiple comparison test will define which of the three or more groups
differ significantly. (Gaddis GM, Gaddis ML: Introduction to biostatistics :
Part 4, statistical inference techniques in hypothesis testing . Ann Emerg
Med July 1990;]9:820-825 .1

INTRODUCTION
The research process follows an organized, stepwise pattern . A problem

is identified, the research hypothesis is generated, methods of data collec-
tion are devised, and the statistical analysis of the data to be collected is
designed . Calculation of measures of central tendency and variability are
easily completed, but alone these numbers have only descriptive value .
Making a decision to reject or accept the null hypothesis /1-h~) requires
much more extensive statistical analysis of the data .

Statistical methods used to test the null or statistical hypothesis (H,,) are
termed tests of significance .' Recall from Part 3 of this series (May
1990;19:591-597( that hypothesis testing involves accepting or rejecting
Ho . 2 Selection of an appropriate test of significance is dependent on several
factors, including the number of groups to be compared and the type of
data to be analyzed . This fourth in the series of six articles will address the
concepts of parametric statistical inference techniques in hypothesis test-
ing .

PARAMETRIC VERSUS NONPARAMETRIC METHODS
The mean and the standard deviation (SD) of a population describe a

normally distributed population . ,3 (Because the SD is computed as the
square root of the variance, it can also be said that the variance also de-
scribes a normal distribution .) Not only are the mean, median, and mode
equal in a normal distribution of data, but known percentages of data fall
within set SDs from the mean with a normally distributed set of data . The
mean, SD, and variance of a population are termed parameters of that pop-
ulation . Parametric statistical methods are based on these parameters .'
Thus, given the relationship between these parameters and normality, the
underlying assumption of parametric statistical methods is that the data
being analyzed are normally distributed . If the data are not normally dis-
tributed and cannot be defined as interval or ratio data, other statistical
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FIGURE . Flow chart for multiple
comparison decisions (adapted from
Hopkins and Chadbourn (1967] and
Keppel 119731).

methods appropriately termed non-
parametric statistical methods are
used .

13 8/821

In addition to differences in type of
data analyzed and the assessment of
normality of the data, there are other
characteristics possessed by these
two classifications of statistical tests
that illustrate their inherent differ-
ences . First, parametric tests prove to
be more powerful than non-
parametric tests . That is, if a differ-

Annals of Emergency Medicine

ence between groups truly exists, all
else being the same, that difference
would more likely be found using the
parametric test . Furthermore, more
information about the data is gener-
ated from parametric tests . I However
important these differences are, the
nonparametric statistical test should
not be discounted. Because not ;ill

19 :7 July 1990'



data are normally distributed and not
all are of an interval or ratio scale,
nonparametric methods that are
sound in their mathematical theory
often offer the only legitimate means
of data analysis available.

PARAMETRIC STATISTICAL
INFERENCE TESTS
t-Test
Student's t-test (t-test) is the pa-

rametric statistical method with
which researchers are most often fa-
miliar . It is certainly the most com-
r11on statistical method reported in
the medical literature .' The t-test is
used to accept or reject Ho . It is sim-
plistic in that a comparison between
two groups can be made and a deci-
sion rendered without further analy-
sis . Yet the t-test is powerful ; it is a
parametric method that mathe-
matically and theoretically is based
on the means, SDs, and variances of
the data .
The t-test also requires that several

assumptions regarding the data be
made prior to use . If the data do not
meet the assumptions, then the t-test
is not the appropriate method to use .
Assumptions of the t-test include the
following : 1) The populations from
which the samples were drawn
should approach a normal distribu-
tion ; 2) the variances of the popula-
tions from which sample 1 and sam-
ple 2 were drawn should be equal or
nearly equal ; and 3) the observations
within a population or sample group
should be independent, ic, "not
paired, matched, correlated, or inter-
dependent in any way." 4
While these assumptions are im-

portant, the t-test is robust enough to
be an appropriate test if an assump-
tion is not met in the strictest sense
(excepting the assumption of inde-
pendence, which must he met at all
times) . 4 ,s However, this is not to say
that it is appropriate to use the t-test
for nominal or ordinal data or data
th ;rt do not come from a normally or
near-normally distributed popula-
tion .
While the t-test is used to compare

two sample groups, the experimental
design of the study 11111st be consid-
ered because not all t-tests are the
same. Consideration of the following
is important : 1) Are the observations
between groups independent (as is
th, :, case for a control vs experimental
group design), so that a non1u1ired
t-test is appropriate? 2) Arc the ob-
19 :7 July 1990

servations between groups dependent
(as is the case for a pretest/post-test
design), so that a paired t-test is ap-
propriate? 3) Are the groups equal or
unequal in size? 41 Is the comparison
between a population mean and sam-
ple mean or between two sample
means? S) Is the direction of the dif-
ference between the two groups
known or unknown? If a direction of
difference is postulated, the t-test is
termed a one-tailed test . If no direc-
tion of difference is postulated, the
t-test is termed two-tailed .
A very common experimental de-

sign in the medical literature is a sit-
uation in which there are two differ-
ent independent groups, a control
group and an experimental group .

For example, suppose a new drug is
being tested to see if it will decrease
arterial pressure in persons with hy-
pertension . Two sample groups
would be selected by random assign-
ment . Group 1 will receive a placebo
while group 2 will receive the drug in
question . The alpha (a) level is pre-
set . (Because the drug in question is
hypothesized to lower arterial pres-
sure, a direction of change is postu-
lated, and this data should be tested
by a one-tailed t-test .) The data are
collected, descriptive statistics axe
calculated, and the t value is com-
puted . The t-test calculation is easily
referenced . 4-6
Once a t value is obtained, the re-

searcher should consult a table of
critical values for t with the appro-
priate a level and degrees of freedom .
If the calculated t value is greater
than the critical t, H r , is rejected and
it is concluded that the medication
in question does lower diastolic arte-
rial pressure in hypertensives . If the
calculated t value is less than the
critical t, H� is accepted as tenable .
Another experimental design com-

mon to the medical literature is the
pretest/post-test design . This results
in dependent or related data between
groups (repeated measure) and is an-
alyzed using the paired t-test .

For example, a new thrombolytic
agent is developed that is postulated
to halt the progression of a myocar-
dial infarction . Patients entering the
emergency department with an
evolving myocardial infarction un-
dergo Doppler echocardiography to
assess ejection fraction . Following
this procedure, the experimental
thrombolytic agent is administered .
Two days later, ejection fraction is
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assessed again . Pre- and post-throm-
bolytic administration data are com-
pared using a paired t-test so that pa-
tients serve as their own controls .
The lack of a significant difference
between pre- and post-treatment
ejection fraction estimates is ex-
pected if the drug is efficacious .
The t-test is the method of choice

when making a single comparison
between two groups whose data meet
the assumptions required of parame-
tric analysis methods . However,
what is done if the experimental de-
sign consists of three or more groups
to be compared? The researcher may
incorrectly compare these groups
using several t-tests . For example, if
an experiment consisted of one con-
trol group (C), and three experimen-
tal groups (El, E2, E3), the compari-
sons made using t-tests would be C
versus El, C versus E2, C versus E3,
El versus E2, El versus E3, and E2
versus E3 . While this seems logical
and certainly easy, it is improper and
can lead to serious errors in drawing
conclusions from the data . 1,4-6
When several groups from an ex-

periment are compared using "multi-
ple t-tests," the probability of mak-
ing a type I error (rejecting a true Ht ,)
is increased as the number of com-
parisons made using independent
t-tests increases . 4 The increase in (x
level can be calculated as follows :
Step 1
Number of comparisons :
X = no . of groups in experiment
C = no . of comparisons -= X(X - 1)

Step 2
Corrected cY level :
a corrected = 1 - (1 - (w)-

2

Example : As shown above, with four
groups, there can be a rnaxirnurn of
4(4 - I)/2 = 6 paired comparisons . If
the original ex level was P = .05, the
corrected a will be 1 - (1 - .05) 6 =

.26 . Thus, there is now a .26 chance
of inappropriately rejecting the null
hypothesis (type I error) in at least
one of the six comparisons made . 4 In
most studies, this would be unac-
ceptable! Should multiple t-tests be
made among dependent groups, tile
corrected a levels are even greater
than those calculated for indepen-
dent groupS . 4 Thus, multiple t-tests
should not be accepted as a legiti-
n1ate means of data analysis for the
comparison of more than two
groups .-',,',

822/ 139



BIOSTATISTICS
Gaddis & Gaddis

ANALYSIS OF VARIANCE
Analysis of variance (ANOVA) has

long been an accepted method of
comparing three or more groups from
one experiment . The advantages of
ANOVA over multiple t-tests include
the following :", 1) The a level is held
constant at the preset level with
ANOVA, while the a level for multi-
ple t-tests increases as the number of
comparisons increases ; 4 2) one
ANOVA is less cumbersome to cal-
culate than are several t-tests ; and 3)
ANOVA is a more powerful data
analysis method than is the t-test .
ANOVA is the appropriate statistical
method to test for differences among
more than two groups . Often, it is as-
sumed that ANOVA is used to deter-
mine if there is a difference among
the means of these groups rather
than among the groups' collective
values . This is an incorrect assump-
tion . While the mean describes a
group in a meaningful way, it is sim-
ply a descriptor of the group . Many
statistical references will discuss
ANOVA as a comparison between
means, but intragroup and intergroup
variability is what is actually being
analyzed .

It is also of value to understand
how ANOVA relates to the theory of
hypothesis testing . Without the te-
dium of a guided tour through the
calculation of ANOVA, a simple ex-
planation of ANOVA follows .
A test of the null hypothesis can

be made in terms of two sets of dif-
ferences (subjects participate in only
one treatment, ie, subjects are
"nested" within treatments) . "One of
these sets of differences is obtained
by comparison of differences among
treatment groups, referred to as ex-
ternal or between-group differences .
The other set is obtained by compari-
son of differences among subjects re-
ceiving the same treatment within a
treatment group, termed internal or
within-group differences . Between-
group differences are a result of the
combined influence of the experi-
mental treatment plus experimental
error . Within-group differences are
the result of experimental error
alone."7 The comparison ratio :

is sensitive to the effects o£ experi-
mental treatment and can be written
as :

140!$23

Between-group differences
Within-group differences

Treatment effect -+- experimental error
Experimental error

Assuming that the experimental er-
ror rate estimates are approximately
equal, any influence of treatment
will result in a ratio that is greater
than 1 . 7 The above example of hy-
pothesis testing illustrates the gen-
eral theory behind the mathematical
calculations of ANOVA.

Just as the t-test involves calcula-
tion of a t-statistic, which is com-
pared with a critical t, ANOVA in-
volves calculation of an F-ratio,
which is compared with a critical
F-ratio . The F-ratio answers the ques-
tion, Is "the variability between the
groups large enough in comparison to
the variability of data within each
group to justify the conclusion that
two or more of the groups differ?"6 If
the variability between groups is
large enough, we can conclude that
there is a significant difference be-
tween groups . The F-ratio is defined
as follows :
F-ratio = Between-groups variance

Within-groups variance
ANOVA is not just one simply de-

fined computation . The experimental
design possibilities are numerous
with ANOVA. By using one test, sev-
eral factors (eg, drugs, dose levels,
dose times) can be analyzed for rela-
tionship at one time . The number of
F-ratios calculated in an ANOVA is
directly related to the number of fac-
tors in the experimental design .
Thus, each ANOVA computation is
unique to the experimental design
being tested . It is the researcher's re-
sponsibility to ensure that the appro-
priate ANOVA is used, given the de-
sign of the study .
The assumptions for ANOVA are

the same as those for the t-test . 4-6 To
reiterate : 1) The populations from
which the samples are drawn should
approach normal distribution ; 2) the
variances of the populations from
which the samples were drawn
should be equal or nearly equal ; and
3) the observations within groups
must be independent .
These assumptions can usually be

met by random sampling and by use
of a good measurement scale . 6 The
more that the above assumptions for
ANOVA are violated, the more likely
a type I or type II error will be made. 6
As with the t-test, ANOVA is ro-

bust enough to be an appropriate test
Annals of Emergency Medicine

if the above assumptions are not
strictly met (excepting the assump .
tion of independence, which must be
met at all times). 4.s When the com.
pared groups have equal values of n,
population variances need not be ho-
mogenous . Also, normality of the
population distributions may be vio .
lated to a limited degree without
consequence . 4-6 Finally, because
ANOVA is calculated using a param-
eter (variance), it is considered to be a
parametric statistical analysis
method and its use should be limited
to interval and ratio scale data .

Thus, there exist many similarities
between the t-test and ANOVA. This
can further be extended to the calcu-
lated t from the t-test and to the F-ra-
tio from ANOVA. If an ANOVA was
being used instead of the t-test to
compare two groups, it would be
found that F = tz for these data . 4, 5

MULTIPLE COMPARISON
METHODS
Following a significant F test, the

next logical step would be to ask,
Which of the groups compared in the
ANOVA are significantly different?
This question can be answered by
the use of multiple comparison pro-
cedures . "All are essentially based
upon the t-test but include appropri-
ate corrections for the fact that more
than one comparison is being
made."'
There exist numerous legitimate

methods of multiple comparison,
each looking for unplanned yet "in-
teresting" differences in the experi-
mental data, but operating under a
different set of rules and assump -
tions.s The test that is selected for
use should be the test that meets the
needs of the researcher and the de-
sign of the study . But overall, it is
important to remember that the rea-
son for using ANOVA and a multiple
comparison method is ultimately to
control the experimentwise error rate
(the type I error rate for all compari -
sons) while at the same time making
several different comparisons . 7 Tlie
experimentwise error rate can be lim-
ited by reducing the number of com-
parisons made or reducing the error
rate within each comparison . Be -
cause most researchers do not want
such imposing conditions placed on
their work, as would be the case by
limiting the number of comparisons
allowed, the only other way to con-
trol the experimentwise error rate is
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to control the type I error rate within
each comparison; hence, the purpose
behind multiple comparison tech-
niques . However, it is important to
note that in reducing the type I error
rate in such a way, there will be an
increase in the type II error rate .
Thus, before progressing, the re-
searcher must determine which is
more detrimental to the work, mak-
ing type I errors or making type II
efors . 7
A summary flow chart of the selec-

tion of multiple comparison tests is
shown (Figure(. Use of this figure will
help guide the researcher to select
the test most appropriate for the ex-
perimental design tested and research
questions asked . This flow chart, de-
veloped by Hopkins and Chadbourng
and modified by Keppel, 7 was in-
tended to show the similarities and
differences between some of the var-
ious multiple comparison methods .
It should not be used as a "fixed and
rigid plan for analysis ."7 For the pur-
poses of this article, this chart serves
as a logical guide to aid the reader in
the understanding of multiple com-
parison methods .
Before any multiple comparison

test, an a level is determined . Next,
an F test is performed . If a significant
F-ratio is obtained, the process of
data analysis continues to determine
which groups differ statistically . The
test of Least Significant Difference
(LSD) is an option if the researcher
wishes to control the comparison-
wise error rate (individual type I er-
ror rates for each comparison)' and if
a small number of comparisons, rela-
tive to the total number of compari-
sons possible, are to be made . How-
ever, if the experimentwise error rate
(type I error rate for all comparisons)
must be held constant, other
methods of multiple comparison
must be considered .
There are two ways to control the

experimentwise error rate . These in-
clude the layer or stepwise method
and the experimentwise method . The
layer method gradually adjusts the
type I error rate . The experimentwise
method holds the type I error rate
constant for a set of comparisons .
The Newman-Keuls test and Duncan
test are examples of layer methods .

If an experimentwise method is se-
lected, the type of comparisons to be
made will determine the multiple
comparison method selected . If com-
Parisons are made only between a
19 :7 July 1990

control group and experimental
groups, the Dunnett test is an option
of multiple comparison to consider.
However, if the group comparisons
are between any groups, there are
other test options . The Dunn test
could be considered if there are only
a few comparisons to be made . If
there are a large number of compari-
sons to be made, the Tukey test or
the Scheffe test might be considered .
The Tukey test assumes that the
groups being compared are of equal
size and is appropriate in the simple
comparison of one group with an-
other . The Scheffe test is based on
the F statistic and thus is less af-
fected by violations of the assump-
tions of normality and homogeneity
of variances . Should comparisons be
desired between complex combina-
tions of groups, the Scheffe test will
be sensitive in detecting real differ-
ences.'
While not included in the flow

chart, the Bonferroni t-test is a multi-
ple comparison method frequently
used in medical literature . The Bon-
ferroni t-test adjusts the preset a
level by the number of comparisons
to be made . 1,9

aadi - Up
nn

where p is the preset a level and n is
the number of comparisons to be
made . "If each comparison is made
using the critical t corresponding to
ap/n, the error rate for all compari-
sons taken as a group will be at most
a t , ."t Thus the preset a level is pro-
tected . However, the Bonferroni
t-test becomes very conservative as
the number of comparisons made in-
creases . t

Finally, as previously noted, confi-
dence intervals may be more useful
than multiple comparison tests in
analysis of intergroup similarity . 2,3,9
"Confidence intervals : 1) Show the
degree of uncertainty in each com-
parison in an easily interpretable
way ; 2) make it easier to assess the
practical significance of a difference
as well as the statistical significance ;
and 3) are less likely to lead non-stat-
isticians to the invalid conclusion
that nonsignificantly different sam-
ple means imply equal population
means.' 19
The above discussion of multiple

comparison methods and their uses
is a basic overview of just a few of
the possible options available to the
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researcher. There are other legitimate
methods that have not been included
in this discussion because of space
limitations . Furthermore, statistical
procedures and opinions on multiple
comparison theory are continually
evolving . The researcher is free to se-
lect whatever multiple comparison
method is desired as long as the
method is appropriate for the experi-
mental design and research questions
asked .

SUMMARY
In conclusion, when selecting the

method for hypothesis testing, sim-
plicity and familiarity must be
pushed aside for assurance that the
data being analyzed meet the defined
assumptions required for use of a
given test . For the t-test and
ANOVA, these assumptions include
normality of the populations from
which the data come, homogeneity
of the variances of the sample popu-
lations, and independence of the data
points within a sample group .

If the experimental design consists
of only two groups, the t-test is ap-
propriate to test for a significant dif-
ference between these groups . How-
ever, if there are three or more groups
to compare, the t-test is inappropri-
ate because the preset level will in-
crease with the number of compari-
sons made .
ANOVA is a powerful statistical

test to determine simultaneously if
there is a significant difference
among three or more groups . While
the F-ratio will tell if significance
among any of the groups exists, it
gives no information regarding which
of the groups differs .
Thus, following a significant F-

ratio, a multiple comparison test can
be selected that will define which of
the three or more groups is different .
The multiple comparison method se-
lection is based on the experimental
design and the research questions
asked .
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introduction to Biostatistics: Part 5,
statistical Inference Techniques for
Hypothesis Testing With Nonparametric Data

Specific statistical tests are used when the null hypothesis (H�) is to be
tasted using nonparametric nominal or ordinal data . With nominal data,
experimental results are expressed by proportions or frequencies . Chi-
square or related tests (the Fisher's exact test or the rows by columns test)
are appropriate for testing H, with nominal data . Ordinal data permit
arrangement ofstatistical results by rank . Rank-order tests used to test H �
with ordinal data include the Mann-Whitney U, Kolmogorov-Snnrnov,
Wilcoxon, Kruskal-Wallis, and Friedman tests . The Kruskal-Wallis and
Friedman tests permit multiple intergroup comparisons. Other rank-order
tests permit only single intergroup comparisons. Specific details to guide
the researcher in the proper selection of these tests are presented . fGaddis
G"vI, Gaddis ML: Introduction to biostatistics : Part ,5, statistical inference
techniques for hypothesis testing with nonparametric data . Ann Ernerg
Med September 1990;19:1054-1059.1

INTRODUCTION
Although the Student t-test and analysis of variance (ANOVA) are

among the most powerful inferential statistical methods, they are not ap-
propriate for nominal and ordinal data .'
Fortunately, statisticians have devised inferential statistical techniques

al ;)ropriate for testing the null hypothesis (Ti,) with nominal or ordinal
data . The chi-square ()( 2 ) test, Fisher's exact test, and rows by columns test
(RXC test) can be used when nominal data are to be analyzed . The Mann-
Whitney tJ, Kolmogorov-Smirnov, and Wilcoxon rank tests can he used
with ordinal data, and, like the t-test, are appropriate for single compari-
sons between groups . The Kruskal-Wallis and Friedman rank tests for ordi-
nal data, like ANOVA, are appropriate for multiple comparisons between
groups .
A conceptual framework for understanding the applicability of these

nonparametric tests is provided in lieu of detailed examples, in the interest
of brevity .

TESTS FOR PROPORTIONS AND FREQUENCIES
OF NOMINAL DATA MATRICES
Chi-Square Tests
Chi-square tests are used to answer questions about rates, proportions,

or frequencies.z In other words, X2 tests are used to tell whether a differ-
ence between populations or groups exists for the rate at which different
outcomes occur. Chi-square tests are suited for the analysis of nominal
da i :t .
Two types of X2 tests exist . The X2 test of independence, also known as

the X2 test of association, is commonly used in biomedical statistics and is
used for comparison of two or more groups .." The X2 "goodness of fit" test
is used to compare sample group data with data from a known population .
This permits researchers to assess whether the sample group is drawn from
the same population as the "standard of comparison," the known popula-
tion .4

Chi-Square Test of Association
To perform a x2 test of association, data are arranged into a matrix, just
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FIGURE 1 . Chi-square testing .

as is the case for calculating sensi-
tivity, specificity, and predictive
value . Separate rows are made for
each population being compared in
the matrix, with separate columns
for each type of outcome in the ma-
trix . Unlike the case for sensitivity,
specificity, and predictive value, the
matrix can be not only 2 x 2 (Figure
1), but also any larger size . The row
and column totals are derived, and
then the expected frequencies for
each cell (box) in the matrix are cal-
culated (Figure 1) . The individual
values for the quantities (observed
frequencies minus the expected fre-
quencies) are calculated, then
squared, and divided by the expected
frequency in each cell . These values,
calculated for each cell, are then
summed (Figure 1) . This yields a
value of the X2 statistic, which is
compared against a critical value ta-
ble to determine whether statistical
significance is achieved .
Chi-square tables list critical

values for various degrees of freedom
(df) . The df in a X2 matrix is calcu-
lated as :

df = (no. of rows - 1(
(no . of columns - 1)

The reason that this equation defines
the number of degrees of freedom is
as follows : when the row and col-
umn totals are known, after the cell
frequencies for df cells are assigned,
the remaining cell frequencies are
constrained by the values of the pre-
viously assigned cell frequencies and
the row and column totals .'
Chi-square critical value tables

show that as the df increases, the
critical value of the X2 statistic in-
creases for any level of significance .
This is a consequence of the nature
of the X2 distribution for varying de-
grees of freedom . 4

Six assumptions of the X2 test of
association must be met if the test is
to be properly applied .2
Only frequency data may be an-

alyzed. (These data may be derived
from data that are ordinal, interval,
or ratio and transformed to nominal
frequency data .)
Events must be independent

within a sample group .
No cell of a 2 x 2 matrix, or less

than 20% of the cells of larger ma-
trices, may have a frequency of less
than S . (For 2x2 matrices, if a cell

154/1055

Population 1
Population 2

2.

3.

4 .

5.
6.

Obtain observed cell frequencies for each cell from the experimental
data .

Calculate expected values for all cell frequencies :
Expected value = row total x column total / grand total

For each cell, calculate value of :
Observed frequency - Expected frequency

Square this value, and divide by expected frequency for each cell .
Observed frequency - Expected frequency) 2 / Expected frequency

Sum these values for each cell to obain value of the X2

For a 2x2 table only, use a shortcut formula:
X2 = (AD-BC) 2 N / ([A+B] [C+D] [A+C] [B+D]
where N = grand total ;
A = observed value in cell A;
B = observed value in cell B;
C = observed value in cell C; and
D = observed value in cell D.

This shortcut formula does not

size is less than 5, Fisher's exact test
should be used .)
There must be a logical or empiri-

cal basis for data classification into
nominal groups .
The sum of expected frequencies

for all cells must equal the sum of
observed frequencies for all cells .
The sum o£ all observed frequen-

cies minus the sum of all expected
frequencies must equal 0.

Several limitations exist for the
use of the X2 test. 2,3,5 The test cannot
be used for paired or related samples
because the assumption of indepen-
dence is violated . Chi-square does
not indicate the strength of an asso-
ciation . It merely indicates whether
an association exists . For instance, P
< .001 does not indicate a stronger
association than P < .05 .
When large frequency tables exist,

the R x C test of independence using
the G statistic can be substituted for
the Xz test, for convenience . (The
R x C test is discussed in more detail
later in this paper.)

In matrices larger than 2 x 2, if any
cell has an expected value of less
than 1, or if more than 20% of the
cells have an expected value of less
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statistic.

include the Yates correction factor.

than 5, no alternative exists except to
combine categories or to collect
more data . If categories are to be
combined, they must be combined
for a rational reason and not simply
for conveniences

Just as repeated sampling of nor-
mally distributed interval or ratio
data yields differing estimates of the
population mean and standard devia-
tion, so repeated sampling of nomi-
nal data yields differing frequencies
of each cell in a XZ matrix .5
The power of the X2 test increases

as the number of individuals in the
sample increases . 4

Yates Correction for Continuity
The distribution of the X2 statistic

is continuous, just as a temperature
scale, yet X2 is applied to qualitative
nominal data, which does not have a
continuous distribution . This be-
comes a source of potential bias to-
ward making a type I error in 2 x 2
matrices . Therefore, a correction fac-
tor has been derived by Yates to cor-
rect for this potential source of
bias.4-1~ This correction involves sub-
tracting 0.5 from the absolute value
of the difference between each ob-

19 :9 September 1990

Outcome
1

Outcome
2

Cell A Cell B Row 1 Total
Cell C Cell D Row 2 Total

Column 1 Column 2 Grand - N
Total Total Total



Population 1
Population 2

2.

3.

4.
5.

2.
3.

5.

6.

Calculate the probability of the data matrix :
P = QA +B]!) QC +D]1) QA +C]!) ([B+D]!) / (N! A! B! C! D!)

Determine the distribution of the next less likely (or more extreme)
matrix by subtracting 1 from the smallest cell frequency in the matrix .
Then, fill in new values for the other three cell frequencies in the
matrix by using new cell frequencies that permit the row and column
totals to remain constant .
Calculate the probability of the revised data matrix with the same
equation as above .

Repeat steps 2 and 3 until the value of the smallest cell equals 0.
Sum the individual P values obtained in the steps above. This yields
the P value to be reported by the use of Fisher's exact test, in the
case of a one-tailed test . For two-tailed tests, it is controversial
whether it is proper to double the calculated Fisher P value because
the distribution of probabilities for all possible outcomes is
asymmetric .

Rank all N scores, from lowest to highest. Assign a rank of 1 to the
lowest score and N to the highest score . Average the rank score for ail
ties within or between groups .
Sum the ranks of the smaller group to obtain Rs.
Calculate the value of U:
U = NS x N, + (Ns) (Ns + 1) / (2 - Rs)
where NS = number of observations in the smaller size group;
N, = number of observations in the larger group; and
RS = sum of ranks of the smaller group.

a. Calculate U' = NS x N, - U

Determine which is smaller, U or U', and use the smaller
value of U for subsequent calculations .
When N is more than 20, the distribution of U approaches
Therefore, calculate :
Mean w,, = NS x N, / 2
Standard deviation a � = (Ns x N,) (NS + N, + 1) / 12
Calculate Z, which is compared with a table of the Z distribution to
assess for statistical significance :
Z = U - W"/Q�

served and expected cell frequency,
yielding the formula X2 = (I(Obser-
ved frequency - Expected fre-
quencyll -0 .5)2 / Expected fre-
quejicy.
The Yates correction is not needed

when the matrix is larger than 2 x 2 ;
19 :9 September 1990

value as the

normality.

2

3

the X2 statistic for the matrix does
not reach statistical significance ; or
the number of individuals in the data
matrix exceeds 40 . ;,4,7

X2 Goodness of Fit Tests
Chi-square goodness of fit tests are

Annals of Emergency Medicine

FIGURE 2. Fisher's exact test.

FIGURE 3. Mann-Whitney U test for
groups with N > 20 .

used to compare sample group data
to known population frequency data .
This lets researchers decide whether
that sample group was drawn from
the same population as the "standard
of comparison," the known popula-
tion .4 A classic example of the use of
this test involved testing whether the
frequency of the ABO blood groups
was the same in the general popula-
tion as in a population of 223 sensi-
tized Rh-negative women." It was
found that women of blood group A
were over-represented in the popula-
tion of sensitized women, when
compared with the distribution of
ABO blood groups in the general pop-
ulation . Therefore, it was concluded
that having type A blood makes Rh
sensitization in Rh-negative women
more likely .
To calculate the X2 statistic for the

goodness of fit test, data are arranged
into a matrix. One column lists sam-
ple group cell frequencies . The other
column lists population data cell fre-
quencies . Thereafter, the mechanics
of calculating the X2 statistic and de-
termining significance from statisti-
cal tables are similar to the X2 test of
independence, except that df =
(number of rows of data - I).
The X2 goodness of fit test is a one-

column test, with population instead
of sample data used to calculate ex-
pected values for each cell in the ma-
trix . The assumptions and limita-
tions of the XZ goodness of fit test are
the same as for the X2 test of inde-
pendence .

Fisher's Exact Test
Fisher's exact test is a variant of

the X2 test of independence . It is used
when the number of individuals in
one cell of a 2 x 2 matrix of data from
20 to 40 individuals is less than
five .5- 7 The assumptions of the test
are the same as those of the X2 test .
The calculation of Fisher's exact

test involves direct calculation of the
probability value P for a one-tailed
test (Figure 2( .x,,7 This makes consid-
eration of degrees of freedom for the
data matrix irrelevant . Because the
distribution of probabilities of data
matrices is not symmetric, it is con-
troversial whether it is appropriate to
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Outcome Outcome
1 2

Cell A Cell B Row .1 Total
Cell C Cell D Row 2 Total

Column 1 Column 2 Grand = N
Total Total Total
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"If the cell frequency is less than 5 for two or more of the cells, then it is controversial whether Fisher's exact test should be calculated .

FIGURE 4 . Selection of tests for
nominal nonparametric data .

double the calculated P value when a
test is two-tailed .

Rows'by Columns Test
The R x C test is a variant of the X2

test suited to very large sample sizes
or very large data matrices.6 The as-
sumptions and limitations of this
test are the same as for the X2 test .
Calculation of the R x C test G sta-
tistic involves logarithmic transfor-
mation of the data, which is useful
for handling calculations with large
cell sizes. This test is often easier to
use for slide rule or pocket calculator
estimation of P values than the Xa
test of independence when cell sizes
are large . However, with the advent
of widely available microcomputers,
it is being used less frequently .

NONPARAMETRIC RANK
TESTS' FOR ORDINAL DATA
Rank tests are used for the analysis

of ordinal data or for interval or ratio
data that do not meet the assump-
tions of the t-test or ANOVA. Para-
metric statistical methods cannot be
properly applied to nonparametric
data, for which mean and standard
deviation are improper and mislead-
ing . t The power of these non-
parametric tests approaches 95% of
the power of the t-test and ANOVA
when applied to the same data.?
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Rather than using the values of ob-
servations themselves, rank tests in-
volve ranking parametric data from
lowest to highest, then calculating an
appropriate statistic . This number is
then compared with a statistical ta-
ble to assess possible statistical sig-
nificance . 3 No assumptions are made
about the nature of the data distribu-
tion in the population sampled .
These tests are therefore known as
"distribution-free" tests .3 The Mann-
Whitney U, Kolmogorov-Smirnov,
Wilcoxon, Kruskal-Wallis, and Fried-
man tests are examples of non-
parametric rank tests.

Mann-Whitney U Test
The Mann-Whitney U test was de-

signed for analysis of ordinal data
that are derived from independent
samples, exist at discrete levels of
magnitude in the distribution, and
are not grouped into a cumulative
frequency distribution . In other
words, individual scores or data
values are not lumped together into
groups for further analysis . The
Mann-Whitney U test is a non-
parametric analog of the t-test . A sin-
gle comparison is made between two
nonpaired groups which need not be
of equal size . The test can be per-
formed as one-tailed or two-tailed, as
the hypothesis being tested war-
rants . 3 -s-s
The test examines whether the dis-

tribution of ranked responses be-
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tween the two samples being com-
pared are significantly different . It
does this by the calculation of a U
statistic that is based on the rank or-
der of all data points . From this U
value, a probability value is derived .
The calculation of U varies by the

size of the sample studied and can be
referenced? Figure 3/ . The presen ::e
of ties of rank between members of
different groups affects the distribu-
tion of U only slightly but can be
corrected for . However, the effect of
ties between members of different
groups is so small that this correc-
tion is usually omitted .?

Kolmogorov-Smirnov Test
The Kolmogorov-Smirnov test is

used to see whether two independent
samples of data have been drawn
from the same or different popula-
tions . It is a nonparametric analog of
the nonpaired t-test . However, the
Kolmogorov-Smirnov test is applied
to data grouped into cumulative dis-
tribution ranges.? An example of a
cumulative distribution grouping fa-
miliar to many emergency physi-
cians is the manner in which the
Glasgow Coma Score is used to help
determine the Trauma Score .9 Point
values are assigned to various ranges
of Glasgow Coma Scores and com-
bined with scores from the respira-
tory rate, systolic blood pressure,
capillary refill score, and respiratory
expansion quality toward the calc-. -
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Type of Data N Other Comments Proper Test

Nominal, or other that has > 20 2 x 2 or larger matrix, no cell X2 test of independence
been transformed to nominal frequency less than 5

Comparison of two or more
experimental groups or types
of outcomes

Same as above > 20 2 x 2 matrix or larger, no cell X2 goodness of fit test
frequency less than 5

Comparison of one experimental
group to a previously defined
population

Same as above 20 or less 2 x 2 matrix only Fisher's exact test
Same as above > 20 2 x 2 matrix only ; cell frequency Fisher's exact test

less than 5 for one of the cells"
Same as above "Large" For "large" data matrices or sam- RxC

ples when logarithmic transfor-
mation facilitates calculation of
results



Type of Data
Ordinal; or interval or ratio data
that do not meet assumptions of
the t-test, data not grouped into
cumulative frequency distribution

Ordinal; or interval or ratio data as
above, with data arranged as a
cumulative frequency grouping
Ordinal ; or interval or ratio data
not meeting Mest assumptions

Ordinal ; or interval or ratio data
not meeting ANOVA assumptions

Ordinal ; or interval or ratio data
not meeting ANOVA assumptions

lation of the Trauma Score .
When a sufficiently large differ-

et-ce exists between the ranking of
the two sample cumulative distribu-
tions under comparison, H� is re-
jected . The calculation of the Kolmo-
gorov-Smirnov test is detailed by
Siegel' and is conceptually similar to
the calculation of the Mann-Whitney
U .

Wilcoxon Test
The Wilcoxon test is a non-

parametric rank test analogous to a
paired 1-test because sample sizes in
both groups compared are equal, and
all individuals are represented in
both groups being compared .' There-
fore, samples are not independent,
they are related . The consequence of
this nonindependence is that tests
su h as the Mann-Whitney U are im-
proper . In addition to being suitable
for analysis of nonindependent ordi-
nal data, the Wilcoxon test can be
used to analyze interval or ratio data
that do not meet the normality or ho-
mogeneity of variances assumptions
of the paired t-test. t .s
As is true for the other rank order

tests, the size of the data samples af-
fects the mechanism of calculating
the test statistic W for the Wilcoxon
test . When 20 or more subjects are
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TABLE. Selection of tests for ordinal nonparametric data

studied, the distribution of the W
statistic approaches normality, just
as the distribution of the Mann-
Whitney U statistic approaches nor-
mality when N exceeds 20 .3 The cal-
culation of the Wilcoxon test is eas-
ily referenced and has conceptual and
methodologic similarities to the cal-
culations of the Mann-Whitney 1)
test .

Kruskal-Wallis Test
The Kruskal-Wallis test is the non-

parametric analog of a one-way
ANOVA, because it can be used
when three or more groups of sub-
jects are compared and when subjects
are not permitted to participate in
more than one group . This test has
its own unique formula for the calcu-
iation of the Kruskal-Wallis statistic
H . The value of H is compared with
the X z distribution, with df = (num-
her of treatment groups - 1) if the
sample size is not small . When 11 ex-
ceeds the critical value of the X' sta-
tistic for the appropriate number of
degrees of freedom, H� is rejected and
groups compared are deemed statis-
tically different .;

Friedman Test
The Friedman test is a rank test

used to analyze data obtained when

Annals of Emergency Medicine

Do Subjects
Participate In
all Treatment
Groups? (Do

Subjects "Serve

subjects participate in three or more
treatment groups . Observations are
ranked, and the Friedman test statis-
tic Xzr is calculated in a manner sim-
ilar to the Kruskal-Wallis 1-1 . Tile
value of X2r compared with the X'2
critical value table to assess possible
statistical significance, just as occurs
with the Kruskal-Wallis test . The
Friedman test is analogous to re-
peated measures ANOVA because
subjects participate in more than one
treatment group . ;

SUMMARY
The proper use of various inferen-

tial statistical tests for non-
parametric data has been discussed .
Figure 4 and the Table summarize
key information to guide the reader
in the selection of the proper test
technique .
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No. of Groups
Compared

No. of
Comparisons

as Their Own
Controls"?) Test

2 1 No Mann-Whitney U

2 1 No Kolmogorov-
Smimov

2 1 Yes Wilcoxon

3 or more 2 or more No Kruskal-Wallis

3 or more 2 or more Yes Friedman
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Figure 3 in the article, "Introduction to Biostatistics : Part 5, Statistical Inference Techniques for Hypothesis Testing
With Nonparametric Data" )September 1990;19:1054-1059), contains two errors .

The equation U = Ns x N, + (Ns) (Ns + 1) / (2 -- Rs) should read

l1 = (Ns x N,) -+1 (Ns) (Ns - 1) 1 - Rs
2

The equation (T � = (Ns x NI ) (Ns -+- N, + 1) / 12 should read

v,, = V(N. x NI) (Ns -+- N, + 1) / 12

20:5 May 1991
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introduction to Biostatistics: Part 6,
correlation and Regression

Correlation and regression analysis are applied to data to define and
c; uantify the relationship between two variables. Correlation analysis is
used to estimate the strength of a relationship between two variables. The
correlation coefficient r is a diruensionless number ranging from --1 to
+1 . A value of -1 signifies a perfect negative, or indirect (inverse) rela-
tionship . A value of +1 signifies a perfect positive, or direct relationship.
The r can be calculated as the Ilearson-product r, using normally distrib-
uted interval or ratio data, or as the Speornlan rank r, using non-normally
distributed data that are not interval or ratio in nature . Linear regression
analysis results in the formation of an equation of a line (Y = n1X + b),
i+ hich mathematically describes the line of best fit for a data relationship
between X and Y variables. This equation can then be used to predict
additional dependent variable values (Y). based on the value or the inde-
pendent variable X, the slope ni, air(] tire Yintercept b. Interpretation of
the correlation coefficient r involves use of r2, which implies the degree of
variability of Y due to X. Tests of significance for linear regression are
similar conceptually to significance testing using analysis of variance .
Multiple correlation and regression, more complex analytical methods
that define relationships between three or more variables, are not covered
in this article . Closing continents for this final installment of this intro-
dr-cation to biostatistics series are presented. /(;addis Nil., C;addis GM. In-
tnxltrcticln to biostcrtistics . Part (,, correlation acid regression . Ann Enierg
Med I)ecerliber 19911:19:1462-146R .J

INTRODUCTION
In research or clinical practice, the physician is often asked to relate two

or more variables to predict in outcome. This is exemplified by how risk
factors are devised for prediction of chance of disease occurrence . Risk fac-
tors associate physical or behavioral characteristics with illness 111 a til :111-

ne, that is easily understood by the lay public . All example is the associa-
tion between cigarette smoking, hypertension, and heart disease.
Tile statistical methods used to define or describe such risk factor-dis-

ease relationships are termed correlation and regression analysis . While the
terms correlation and regression are often used together, they represent
separate steps in the process of relationship analysis . Correlation analysis
provides a quantitative way of rricasuring the strength of a relationship
between two variables. Regression analysis is used to mathematically de-
scribe that relationship, with the ultinlatc goal being tile develohincilt of
an equation for prediction of one variable from one or more other variables.

` his final installment of the Introduction to hiostatistics series will pro-
vide an independent discussion of correlation and regression analysis . Final
cornlnents regarding the entire hiostatistics series also are included .

CORRELATION ANALYSIS
In nature, one can often see that two or metre variables are related or

correlated . Tile latitude of a city and its average daily temperature, intel-
ligence quotient of a student and his grade point average, drug dosage ad-
Ministered and the 1'CStlltatlt physical response, and caloric consumption
all(] weight gain or loss are examples . While some relationships between
two on more variables appear obvious, they by no means serve is perfect

19:12 December 1990
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FIGURE 1. Scatter diagram for sam-
ple data given in Table 1 (caloric con-
sumption vs weight change).

predictors of outcome . The relation-
ships may be confounded by
extraneous variables that can ad-
versely affect a "perfect" correlation,
causing variability of the responses .
For example, while it seems obvious
that the closer to the equator a city
lies, the higher its average daily tem-
perature should be, altitude and
weather patterns may influence or
change the expected relationship . In
addition, individual metabolic rate
and physical activity will certainly
affect weight gain or loss, regardless
of controlled caloric consumption .
Thus, while the direction of a rela-
tionship is often intuitive, the
strength of that relationship is not .'
The discussion of the degree of re-

lationship between two random vari-
ables is also a discussion of the cor-
relation between those variables be-
cause "correlation is a relation."2
However, it is very important to re-
member that correlation simply rec-
ognizes a relation . Correlation does
not imply causation!
The degree of correlation between

two variables is estimated in the fol-
lowing manner : first, visualization of
the relationship is best obtained by
placing the variables in question in
graphic form. This graphic represen-
tation is termed a "scatter dia-
gram." 1 "3 A scatter diagram is made
by use of an X (horizontal) and Y (ver-
tical) axis graph . Figure I is a scatter
diagram of mean calorie consump-
tion per day versus weight change per
month (Table 1) . While the total
number of patients is small, a rela-
tionship emerges from the scatter di-
agram that indicates that as caloric
consumption increases, so also does
weight . In Figure 2, some of the var-
ious relationships seen between two
random variables in a scatter diagram
are shown . These include a) positive
(direct) linear ; b) negative (indirect)
linear; c) and d) curvilinear ; e) no re-
lationship ; and f) exponential . 1,4,5

However, the scatter diagram is lim-
ited to simply describing the appear-
ance or pattern of the relationship .
To quantify the relationship in a

meaningful manner, a correlation co-
efficient, a numerical value that de-
scribes the strength of the rela-
tionship, must be calculated . 1- A The
correlation coefficient r is a dimen-
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TABLE 1 . Sample data : Caloric consumption versus weight change

sionless number ranging from -1 to
+ 1, with -1 depicting a perfect neg-
ative linear relationship and + 1 de-
picting a perfect positive linear rela-
tionship . 1-s The closer that r is to 0,
allegedly the weaker the relationship .
However, "a small correlation be-
tween two variables can also be due
to 1) little linear association between
the two variables, or 2) large errors in
the measurement of the variables ." 6
There are several methods avail-

able to calculate a correlation coeffi-
cient . Included in this discussion are
the Pearson product-moment r and
the Spearman rank r, both commonly
used in clinical data analysis.

Annals of Emergency Medicine

Pearson Product-Moment r
The Pearson r is used to quantify

the strength of a linear relationship
between two continuous variables (of
interval or ratio scales) that are frorn
normally distributed populations-' ,,3,5

Before calculation of the Pearson r
is shown, it is important to under -
stand the concept of covariance . Re-
call from part 3 of this series 9 that
variance is a measure of the vari ,
ability or dispersion of a single ran-
dom variable . 6 Covariance, an exten-
sion of this, is defined as "a measure
of how two random variables vary to-
gether."6 Using the example in Table
1, computation of covariance is as

19 :12 December 1990

Patient

(X)
Mean Caloric

Consumption/Day

(Y)
Weight Change/

Month

1 1,200 0.0
2 1,500 0.5
3 1,800 0.5
4 2,000 1 .5
5 2,500 4.0
6 1 .800 1 .0
7 2,500 3.0
8 2,000 2 .0



Y

follows :

19 :12 December 1990

1 . Calculate the mean values of the
X and Y variables : (X and Y) .

2 . Subtract the corresponding mean
from each individual value : (x ; --
X) and y ; - $) .

3 . Calculate the product (x ; -- X)
(y ; - Y) for each variable hair .

4 . Sutra the products calculated in
step 3 .

S . Divide the sutra of the products by
the total number of variable pairs
(n) minus 1 : (n - 1) .

Covariance = S,, y = (E (x ;
Iyi - V)1 / In - 1)

A positive covariance implies that
when one variable is greater than its
mean, so too is the corresponding
variable . A negative covariance im-
plies that when one variable is
greater than its mean, the corre-
sponding variable will he less than
its corresponding mean . Covariance

r =- SXy / Sx ° Sy

2

relates to the equation for the Pear-
son r in that it is the numerator in
the equation for r. The denominator
is obtained by calculating the stan-
dard deviation (SD) for the values of
variable x ISJ, the SD for the values
of variable N, (S y 1, and finding their
product (S,, ` S y ) (Table 2) . Therefore,
the equation for the Pearson product
inontent r is :+ . .;,s,2

The calculated Pearson r in the ex-
ample (Table 2) is .94 . This implies
some degree of positive or direct lin-
ear correlation .

Spearman Rank Order r
When one or more of the variables

being analyzed for strength or direc-
tion of a relationship or trend is not
of an interval of ratio scale, is not
drawn from normally distributed
Poptllatlolr, or does not possess a lin-
ear relationship, a nonparametric cor-

Annals of Emergency Medicine

FIGURE 2. Scatter diagram relation-
ships : a) positive (direct) linear ; b)
negative (indirect) linear ; c) cur-
vilinear ; d) curvilinear; e) no rela-
tionship ; and f) exponential.

relation technique must be used . One
such method is the Spearman rank
order correlation coefficient . The
Spearman rank r is based on the rank
order of the individual data points
and not the actual numerical values .
The Spearman rank r is calculated as
follows (Table 3) :3,5

1 . The values of the two variables
are ranked in ascending or de-
scending order (for ties, the rank is
the average rank),

2 . Calculate the difference between
the ranks for each pair of data .

3 . Calculate the sum of the squared
differences (from step 2) and mul-
tiply by 6 .

4 . Divide the number calculated in
step 3 by n(n 2 - 1), where n
equals the number of pairs of data .

S . Subtract the number found in step
4 from 1 .

Spearman rank
r= 1 -6E(d2)/n(n'--- 1)

Note that Pearson r and Spearman
rank r are similar for the same set of
data . This will be true, especially for
large data sets where the number of
pairs of data is more than .5t) .'

Interpretation and Use of the
Correlation Coefficient
As previously stated, while a

strong correlation might exist be-
tween two independent variables,
this (foes not imply that one event
causes the other . The reasoning be-
hind this is threefold ;
l . Which comes first, the chicken or

the egg ie, . . . does X cause Y, or
does Y cause X? The r calculation
does not have the capabilities to
determine the order of the causal
relationship.

2 . A variable other than X or Y may
influence the relationship .

3 . Complex relationships as found in
the biomedical sciences can rarely
be explained by a simple two vari-
able relationship . ,

Thus, r (whether from Pearson or
Spearman) is simply a descriptor of
the strength and direction of the rela-
tionship between the two variables
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TABLE 2. Calculation of Pearson product-moment correlation coefficient using sample data from Table 1

in question and nothing more . Just as
in hypothesis testing, P < .001 does
not imply greater significance than P
< .05, so a Pearson or Spearman r of
0 .99 does not imply a more likely
causation than an r of 0.95 . However,
correlation analysis may guide the
researcher in determining causation .
Additional studies to aid in defining
the causative variables may be devel-
oped . These studies may be based on
knowledge gained from prior correla-
tion analysis . While the value of r de-
scribes the strength of a relationship
between two variables, an r of 0.5, for
example, does not imply that "the
strength of that relationship is 'half-
way' between zero correlation (no re-
lationship) and a perfect positive cor
relation (1 .0) ."3 The correlation coef-
ficient r can be squared and then
used to estimate "the percent of vari-
ation in one variable that is ex-
plained by variation in the other vari-
able."3

In the sample data given (Table 1),
the calculated Pearson r is 0.94 . The
square of r is 0.88 . This implies that
88% of the variability in weight gain
or loss can be attributed to vari-
ability in the amount of calories
consumed . Otherwise stated, the
amount of calories consumed pro-
vides us with approximately 88% of

= 577.7

TABLE 3. Calculation of Spearman rank order correlation coefficient
using sample data from Table 1
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rs = 1 _

	

(6 (E(f] =

	

1 _

	

((6)(2 .5)] = 1 _ 0.030 = 0.97n(n2-1)

	

(8) (63)

the information needed to predict
weight gain or loss . Finally, r is cal-
culated using sample data . It is only
an estimate of the true correlation
coefficient, rho (p), between two pop-
ulation variables, just as the mean (X)
is a sample mean and is only an esti-
mate of the true population mean mu
(W) .
Should one wish to determine

whether r is significant (ie, whether a
significant correlation exists between

E(d 2 ) = 2.5

two sample variables), hypothesis
testing is indicated . This hypothesis
testing answers the question, "Is r
different from 0 only because of
chance variation (sampling error), or
because the true population correla -
tion coefficient p is not 0?"3 To corrs-
plete the hypothesis test for r, the
value of r and the degrees of freedom,
(n - 2) (where n = the number of
pairs of data correlated), are a i'lilied
to the appropriate table of c ; i tical

19 :12 December 1990

Patient X X (XI - X) y (yi - Y) (X1 - X) (y, - Y)
1 1,200 - 1,912 .5 -712.5 0.0-1 .56--- -1 .56 1,111 .5
2 1,500 - 1,912.5 -412.5 0.5-1 .56= -1 .06 437.25
3 1,800 - 1,912.5 -112.5 0.5- 1 .56= -1 .06 119.25
4 2,000 - 1,912 .5 87.5 1 .5 - 1 .56 = -0.06 -5.25
5 2,500 - 1,912 .5 587.5 4.0 - 1 .56 = -2.44 1,433.5
6 1,800 - 1,912 .5 -112.5 1 .0 - 1 .56 = -0.56 63 .0
7 2,500 - 1,912.5 587 .5 3.0 - 1 .56 = -1 .44 846.0
8 2,000 - 1,912.5 87 .5 2.0- 1 .56 = -0.44 38 .5

X = 1,912.5 Y = 1 .56 E 4,043.75

Patient Rank X Rank Y d d2
1 1 .0 1 .0 0 0
2 2.0 2.5 -0.5 0.25
3 3.5 2.5 1 .0 1 .00
4 5.5 5.0 0.5 0.25
5 7.5 8.0 -0.5 0.25
6 3.5 4 .0 -0.5 0.25
7 7.5 7 .0 -0.5 0.25
8 5.5 6 .0 -0.5 0.25

Step 1 S, = C _l (xi X) (yi - Y)1 / (n 75
- 1) =

4,00449

Step -2 Sx c= (xi X)2 = 1,408,750 = 448.6
n - 1 O - 1

Step 3 SY `= (y_---IT _ 13.22 = 1 .37__9_4

Step 4 r 57= Sxo-~- = ~~
- 0.94
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FIGURE 3 . For a given value. of the
independent variable (X), there will
be a subpopulation of dependent
variables (Y) that displays a normal
distribution . The mean value of each
subpopulation will form a point on
the regression line .

FIGURE 4 . Regression line for sam-
ple data given in Table 1 (caloric con-
sumption vs weight change).

values of r . If the calculated r is
greater than from a statistical
table at a predetermined significance
level, r is determined to be signifi-
cantly different from zero, and thus a
significant correlation exists . Any
correlation coefficients reported in
research studies should include the
corresponding level of significance .

REGRESSION ANALYSIS
Like correlation analysis, regres-

sion analysis is also used to describe
the relationship between two or
more variables . However, regression,
in the process of mathematically de-
scribing a relationship, also develops
a means of prediction of one variable
based on the value of a second vari-
able .H "In regression analysis, the re-
lationship between two variables )or
more) is expressed by fitting a line or
curve to the pairs of data points" as
seen in a scatter diagram .' The "pre-
dictor variable," or independent vari-
able )X), is that which is selected and
manipulated by the investigator . The
"predicted" variable, or dependent
variable (Y), is that which is influ-
enced by X .
Simple linear regression is used to

describe and predict a linear relation-
ship between two variables, one inde-
pendent and one dependent . )While,
regression analysis can be used in the
analysis and prediction of nonlinear
relationships as well as multiple
variable data sets containing two or
more independent variables, this is
beyond the scope of this discussion .)
The assumptions underlying sim-

ple linear regression include : ,'
l . The values of the independent

variable X are set by the investiga-
tor. In the process of data collec-
tion, the "pre-set" levels of X
should not be changed .

2 . The independent variable X
should be measured without ex-
perimental error .

3 . For each value of X, there is a sub-

14661143



BIOSTATISTICS
Gaddis & Gaddis

population of Y variables that are
normally distributed up and down
the Y-axis (Figure 3) .

4 . The variances of the subpopula-
tions of Y are homogeneous (Fig-
ure 3).

5 . The means of the subpopulations
of Y lie on a straight line (thus,
the assumption of linearity is nlet)
(Figure 3).

6 . All values of Y are independent
from one another, though they are
dependent on X .

The Regression Line
The process of linear regression in-

volves defining the "line of best fit,"
or the line that best defines the linear
relationship of the data . This line is
the one that passes through the cen-
ter of the data points . 8 For linear re-
gression, this line is defined by the
equation for a straight line .
Recall that the equation for a

straight line is :
Y=mX+ b

where Y is the dependent variable, X
is the independent variable, m is the
slope of the line, and b is the y-inter-
cept of the line .
Figure 4 shows the line of best fit

for the data set described in Table l .
This line is also used as a predictor

for additional data Idependent vari-
ables) . When the line of best fit is
used to predict Y, the equation is
simply modified as i' = mX -+- b . ''
implies a predicted (or estimated) de-
pendent variable, based on the de-
fined slope, y-intercept, and indepen-
dent variable values .
The calculation of the regression

line {line of best fit) is performed by
the "least-squares method." This is
accomplished by calculating the
equation for the line such that the
sum of the squared deviations for
each data point from the predicted
line of best fit is as small as possi-
ble . 3 - ,1, In other words, the least-
squares method calculates the lure
that comes the closest to running
through all of the data points . There-
fore, the least-squares method de-
rives the equation of the line that re-
lates the linear relationship between
all of the data points with a mini-
mum of error. For details of the cal-
culation of the regression line by the
least-squares method, consult any of
the referenced statistics texts.',;,K
The prediction of a dependent vari-

14411467

able by use of the regression line of
best fit is also related to the correla-
tion coefficient r . The letter r is used
to designate the correlation coeffi-
cient, yet r implies regression . This
is indicative of the relationship be-
tweet) correlation and regression . All
r of +- I or -- 1 implies a perfect cor-
relation between X and Y and also
implies that predicted values of Y
would assume a straight line . If r ---
0, the best predicted value of Y is the
mean of Y . Thus, the closer the abso-
lute value of r is to 1 .0, the closer the
predicted values of Y will lie to the
regression line . 2

Interpretation of the Regression
Line

Tests of significance for linear re-
gression are conceptually similar
to analysis of variance (ANOVA) .'-
Recall from the prior discussion of
ANOVA9 that the total variance in
ANOVA can be partitioned into the
"between groups (experimental) vari-
ance," and the "within groups (error)
variance." Alternatively expressed,
total variance = experimental vari-
ance + error variance . Regression
analysis is similar in that the regres-
sion variance is partitioned in the
same way . Variance due to the regres-
sion process per se is analogous to
ANOVA experimental variance . Vari-
ance due to the "residuals," or the
deviations of the individual data
points from the regression line, is
analogous to ANOVA error variance .
Therefore, for regression, total vari-
ance = regression variance + resid-
ttal variance . The variance is then
put into the form of the sums of
squares (SS), so that for ANOVA, the
equation is:"

SStotal
SShetwcen groups + SSwithin groups

and for regression analysis, the equa-
tion is : 2

SStntal = I Srcgression + SSresidual
Once the sums of squares are calcu-
lated, the F ratio can be derived . For
ANOVA, the F ratio is calculated
using SS values and the degrees of
freedom [tip applicable :

F = )(SShetween gnntps) / df
)(SSwit1 .in gnrups)

	

611
and for regression, the F ratio is cal-
culated :

F - I(SSre~ :,essit~n) tip

Ilssresi,lr,al) i d(I
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in both cases, the

	

is then
compared with F,,iti, .:,l, found in a ta-
ble of critical F ratios . For ANOVA,
When Fe;,1enh,LQd is greater than
Fcriticnt, the difference between group
means is concluded to he different
front zero, and there exists a signifi-
cant difference between at least t :vo
of the groups compared . For regres-
sion, when Fc:,Iet,l :�,, is greater than
Fcritic :,l, the slope of the regression
title is statistically different from
zero . Calculation by this method is
cumbersome and often tedious. Most
statistical packages for computers
that contain linear or multiple re-
gression calculate both the regressi, , n
line and the test of significance for
that line .

CONCLUDING REMARKS
This installment concludes this

six-part series of Introduction to Bio-
statistics articles . Objectives of the
series have included the introduction
of basic concepts of commonly tvxd
biomedical statistical tests to facili-
tate comprehension by persons with
little or no background in biostatis-
tics . We hope that this series has in-
creased the understanding of bio-
medical statistics among clinicians,
residents, and residency faculty .

Part I of this series in the January
issue of Annals included introduc-
tory comments and discussed the fre-
quency of errors of use of biomedical
statistics in the medical literature .
The concepts of sample and popula-
tion were introduced . Types of data
were discussed . As has been shown
in subsequent installments of the se-
ries, it is crucial to understand what
type of data is being analyzed in or-
der to properly select both descrip-
tive statistics and inferential statisti-
cal tests for significance testing .

Part 2 in March discussed descrip-
tive statistics, including measures of
central tendency and measures of
variability. It was shown that certain
descriptive statistics are inappro -
priate descriptors of certain types of
data . For example, the mean value far
an ordinal data sample is at best mis'
leading and represents an erroneous
use of the mean . Confidence inter-
vals were also discussed .

Part 3 in May covered sensitivity,
specificity, and predictive value Of
clinical tests . These commonly of
plied clinical principles were t1l0r
used as an analogy to facilitate un'
derstanding of hypothesis testin,t;. la

19 - 12 Decertitxa 1990



this manner, the concepts of type I
error (a), type lI error (R), and statisti-
cal power (1-R) were introduced.

Part 4 in July presented inferential
statistical techniques appropriate for
parametric data, including the Stu-
dent t-test and ANOVA. These tech-
niques are appropriate only for inter-
val or ratio data that meet the as-
sumptions of these tests.

Part 5 in September continued dis-
cussion of inferential statistical tech-
niques, covering tests properly ap-
plied to nonparametric data, Included
were the X2 and Fisher's exact test for
nominal data, and the "distribution
free" rank tests such as the Mann-
Whitney U, Wilcoxon, Kolmogorov-
Smirnov, Kruskal-Wallis, and Fried-
man tests. These rank tests are ap-
propriate for analysis of ordinal data
and also for interval or ratio data that
do not meet the assumptions of the
t-test or ANOVA.

Finally, this article, part 6, has dis-
cussed correlation and regression,
two data analysis techniques used to
quantify and define the relationship
between two variables. It was shown
that tests for significance for linear
regression are conceptually equiva-
lent to ANOVA tests for significance

19 :12 December 1990

of parametric data .
This series did not cover nonlinear

and multiple correlation and regres-
sion, or multivariate ANOVA. Some
specific tests were omitted from dis-
cussion in some sections in the inter-
est of brevity. The intent of this se-
ries was to introduce basic concepts,
not to provide a comprehensive re-
view of all possible statistical tests .

The authors acknowledge the contribu-
tions of numerous individuals who in-
spired and aided the completion of this
series . Dr Hal Morris of the Department
of Health, Physical Education, and Recre-
ation at Indiana University first brought
the frequency and consequences of im-
proper statistical analysis in biomedical
sciences to our attention and instructed
us in much of the information presented
here . Dr Carl Rothe of the Department of
Physiology and Biophysics of the Indiana
University School of Medicine provided
further practical teaching and detailed
analysis methods. The Department of
Emergency Medicine at the Wright State
University School of Medicine provided
us our first opportunity to contribute to
the statistical education of emergency
medicine residents and faculty . Dr Joseph
Waeckerlc recognized the importance of
proper statistical analysis, provided a fo-
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rum to present this information, and lent
editorial assistance to the project . We also
thank Jayna Ross and Kathy Wagner of
the Department of Emergency Health Ser-
vices at the University of Missouri-Kan-
sas City School of Medicine for prepara-
tion of the manuscripts .
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